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Abstract

Let X be a mean reverting scalar process, X∗ the corresponding running maximum,
T0 the first timeX hits the level zero and ` a loss function, mainly increasing and convex.
We consider the following optimal stopping problem:

inf
0≤θ≤T0

E[`(X∗
T0
−Xθ)],

over all stopping times θ with values in [0, T0]. Under mild conditions, we prove that
an optimal stopping time exists and is defined by:

θ∗ = inf{t ≥ 0; X∗
t ≥ γ(Xt)},

where the boundary γ is explicitly characterized as the concatenation of the solutions of
two equations. We investigate some examples such as the Ornstein-Uhlenbeck process,
the CIR-Feller process, as well as the standard and drifted Brownian motions. Finally,
we perform an empirical examination of the efficiency of this strategy on real financial
data.

1 Introduction

Motivated by application in portfolio management, Graversen, Peskir and Shiryaev [5]
considered the problem of detecting the maximum of a Brownian motion W on a fixed time
period:. More precisely, denoting , [5] considers the optimal stopping problem:

inf
0≤θ≤1

E[(W ∗1 −Wθ)p], (1.1)

where W ∗t := maxs≤tWs is the running maximum of W , p > 0 (and p 6= 1), and the
infimum is taken over all stopping times θ taking values in [0, 1]. Using properties of the
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Brownian motion, [5] reduce the above problem into a one-dimensional infinite horizon
optimal stopping problem, and prove that the optimal stopping rule is given by:

θ∗ := inf{t ≤ 1; W ∗t −Wt ≥ b(t)},

where the free boundary b is a explicit decreasing function.
A first extension of [5] was acheived by Pedersen [10], and later by Du Toit and Peskir

[2], to the case of a Brownian motion with constant drift. A similar problem was solved by
Shiryaev, Xu and Zhou [18] in the context of the exponential Brownian motion. See also
Du Toit and Peskir [4] and Dai, Jin, Zhong and Zhou [1].

We also mention a connection with the problem of detection of the last moment τ when
W reaches its maximum before the maturity t = 1:

inf
0≤θ≤1

E|θ − τ |.

This problem can indeed be related to the previous one by the observation of Urusov [19]
that E(Wτ −Wθ)2 = E|τ − θ|+ 1

2 for any stopping time θ, see Shiryaev in [17]. A similar
problem formulated in the context of a drifted Brownian motion was solved by Du Toit and
Peskir [3], although the latter identity is no longer valid.

In the present paper, we consider a scalar Markov diffusion X, which ”mean-reverts”
towards the origine starting from a positive initial data, and we consider the problem of
optimal detection of the abosolute maximum up the the hitting time of the origin T0 :=∫
{t ≥ 0 : Xt = 0}:

inf
0≤θ≤T0

E[`(X∗T0
−Xθ)].

Here, the infimum is taken over all stopping times with values in [0, T0]. We solve explicitly
this problem as a free boundary problem. Our analysis has some similarities with that of
Peskir [11], see also Obloj [9] and Hobson [6].

A major difficulty in the present context is that, in general, our solution exhibits a non-
monotic free boundary made of two different parts, and driven by two different equations.
Except for [3], the latter feature does not appear in the literature mentionned above, and
has the following interpretation. Because of the mean-reversion, we expect that stopping
is optimal whenever the drawdown X∗ − X is sufficiently large. On the other hand, if
Xt < X∗t and Xt is small, we may expect that the martingale part of the process dominates
the mean-reversion, so that it is not optimal to stop.

The paper is organized as follows. Section 2 presents the general framework and provides
some necessary and sufficient conditions for the problem to be well defined. In Section
3, we derive the formulation as a free boundary problem, and we prove a verification
result together with some preliminary properties. Sections 4 to 6 focus on the case of a
quadratic loss function. In Section 4, we study a certain set Γ+ which plays an essential
role for the construction of the solution. The candidate boundary is exhibited in Section
5, and the corresponding candidate value function is shown to satisfy the assumptions of
the verification result of section 3. Section 7 is dedicated to some examples. In Section
8, we provide sufficient conditions which guarantee that a similar solution is obtained for
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a general quadratic loss function. Finally, Appendix provides a possible trading strategy
based on the results of this paper, and analyzes its performance using real financial data.

2 Problem formulation

Let W be a scalar Brownian motion on the complete probability space (Ω,F ,P), and
denote by F = {Ft, t ≥ 0} the corresponding augmented canonical filtration. Given two
Lipschitz functions µ, σ : R −→ R, we consider the scalar diffusion defined by the stochastic
differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt, t ≥ 0,

together with some initial data X0 > 0. We assume throughout that

µ(x) ≤ 0 for every x ≥ 0, (2.1)

meaning that the process X is reverted towards the origin, as well as σ(x) > 0 for every
x ≥ 0. For the purpose of this paper, the following stronger restrictions on the coefficients
µ and σ are needed:

the function α :=
−2µ
σ2

: (0,∞) −→ R is C2, positive and concave. (2.2)

We introduce the so-called scale function S (see [7]):

S(x) :=
∫ x

0
e

R u
0 α(r)drdu. (2.3)

Remark 2.1 For later use, we observe that the restriction (2.2) has the following useful
consequences:
(i) The function α is non-negative and non-decreasing. Consequently,

∫ u
0 α(r)dr <∞ and

(2.3) is well-defined.
(ii) (1/α)′ (x)→ 0 as x→∞.
(iii) The function 2S′ − αS − 2 is non-negative and increasing.

Notice that the mean reversion condition (2.1) is equivalent to the convexity of S, and
implies that

lim
x→∞

S(x) = ∞. (2.4)

We denote by

Ty := inf {t > 0 : Xt = y}

the first hitting time of the barrier y. We recall that, for a homogeneous scalar diffusion,
we have

Px [Ty < T0] =
S(x)
S(y)

for 0 ≤ x < y, (2.5)
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Our main objective is to solve the optimization problem

V0 := inf
θ∈T0

E
[
`
(
X∗T0
−Xθ

)]
, (2.6)

where X∗t := maxs≤tXs, t ≥ 0, is the running maximum process of X, ` : R+ −→ R+ is a
non-decreasing, strcitly convex function, and T0 is the collection of all F−stopping times θ
with θ ≤ T0 a.s.

We shall approach this problem by the dynamic programming technique. We then intro-
duce the dynamic version:

V (x, z) := inf
θ∈T0

Ex,z [` (ZT0 −Xθ)] , (2.7)

where Ex,z denotes the expectation operator conditional on X0 = x and Z0 = z, and

Zt := z ∨X∗t , t ≥ 0.

Clearly, the process (X,Z) takes values in the state space:

∆ := {(x, z); 0 ≤ x ≤ z}. (2.8)

Defining the reward from stopping

g(x, z) := Ex,z [` (ZT0 − x)] , (x, z) ∈∆, (2.9)

we may re-write this problem in the standard form of an optimal stopping problem:

V (x, z) := inf
θ∈T0

Ex,z [g (Xθ, Zθ)] . (2.10)

Using (2.5), we immediately calculate that

Px,z[ZT0 ≤ u] = Px[Tu ≥ T0]1u≥z =
(

1− S(x)
S(u)

)
1u≥z, (2.11)

so that

g(x, z) = `(z − x)
(

1− S(x)
S(z)

)
+ S(x)

∫ ∞
z

`(u− x)
S′(u)
S(u)2

du (2.12)

= `(z − x) + S(x)
∫ ∞
z

`′(u− x)
S(u)

du, 0 < x ≤ z, (2.13)

where `′ is the generalized derivative of `, and the latter expression is obtained by integration
by parts together with the observation that∫ ∞

`(u)
S′(u)
S(u)2

du <∞ iff
∫ ∞ `′(u)

S(u)
du <∞. (2.14)

Indeed, since ∫ A

z
`(u)

S′(u)
S(u)2

du =
`(z)
S(z)

− `(A)
S(A)

+
∫ A

z

`′(u)
S(u)

du, (2.15)
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we clearly have
∫∞

`(u) S
′(u)

S(u)2
du = ∞ implies

∫∞ `′(u)
S(u)du = ∞. Conversely, suppose that∫∞

`(u) S
′(u)

S(u)2
du <∞. Then, since S(∞) =∞, it follows from (2.15) that

∫∞
z `(u) S

′(u)
S(u)2

du ≥
`(z)S(z)−1, and therefore `(z)S(z)−1 ≤

∫∞
1 `(u) S

′(u)
S(u)2

du for z ≥ 1 by (2.4). Combined with
(2.15), this shows that (2.14) holds true.

We now provide necessary and sufficient conditions on the loss function ` which ensure
that V is finite on R+. Recall that V (0, z) = g(0, z) = `(z) is always finite.

Proposition 2.1 Assume that α ≥ 0 and

sup
u≥z

`(u)
`(u− x)

<∞ for every (x, z) ∈∆. (2.16)

Then, the following statements are equivalent:
(i) V (x, z) <∞ for every 0 ≤ x ≤ z,
(i’) V (x0, z0) <∞ for some 0 < x0 ≤ z0,
(ii) g(x, z) <∞ for every 0 ≤ x ≤ z,
(ii’) g(x0, z0) <∞ for some 0 < x0 ≤ z0,
(iii) either one of the equivalent conditions of (2.14) holds true.

Proof. For θ ∈ T0, set J(θ, x, z) := Ex,z`(ZT0 −Xθ). The implications (ii) ⇐⇒ (ii’) ⇐⇒
(iii) follow immediately from the definition of g in (2.12) together with Condition (2.16).
Also the implications (i) =⇒ (i′) and (ii) =⇒ (i) are immediate as V ≤ g.

We conclude the proof by showing that (i′) =⇒ (iii). Let (i’) hold true and assume to
the contrary that

∫∞ `′(u)
S(u)du =∞. For abritrary 0 < x ≤ z and θ ∈ T0, we have:

E[`(ZT0 −Xθ)|Xθ] = g(Xθ, Zθ) =

{
+∞ if Xθ > 0,

`(Zθ) if Xθ = 0.

Let A := {θ 6= T0}. Then,
• either P(A) > 0, and:

J(θ, x, z) = Ex,z`(ZT0 −Xθ) = Ex,zE[`(ZT0 −Xθ)|Xθ]

≥ Ex,z1AE[`(ZT0 −Xθ)|Xθ] = +∞,

• or P(A) = 0, i.e. θ = T0 a.s. and J(θ, x, z) = J(T0, x, z) = `(z) + S(x)
∫∞
z

`′(u)
S(u)du = +∞.

By arbitrariness of 0 < x ≤ z and θ ∈ T0, this shows that V = +∞ everywhere. 2

Notice that if (2.14) holds, then (2.12) is also valid for x = 0.

Remark 2.2 Without assuming (2.16), we see from the previous proof that (2.14) is still a
sufficient condition for (i) or (ii) to hold true. But in general, it is not a necessary condition.
Indeed consider for example a process with scale function S(x) = ex

2
, and the loss function

`(x) =
∫ x

0 e
u2
du. Then

∫∞
z

`′(u)
S(u)du = +∞ while for x > 0,

∫∞
z

`′(u−x)
S(u) du = ex

2+2xz

2x , so that
(i) and (ii) are satisfied.
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Remark 2.3 Condition (2.16) is satisfied by power and exponential loss functions `(x) =
xp for some p ≥ 1, or eηx for some η > 0. Without Condition (2.16), one cannot hope
to prove that (i’) =⇒ (i) or (ii’) =⇒ (ii). Consider for instance the process with scale
function S(x) = ex

2
and, for ε > 0, the loss function `(x) =

∫ x
0 e

(u+ε)2du. Then if x ≤ ε,∫∞
z

`′(u−x)
S(u) du = ∞, while if x > ε,

∫∞
z

`′(u−x)
S(u) du = e(x−ε)

2+2(x−ε)z

2(x−ε) . So g(x, z) < ∞ if and
only if x > ε or x = 0. In other words (ii’) is true while (ii) is false. Adapting the proof
of (i’)=⇒(iii) by replacing the set A by {Xθ ∈ (0, ε)}, which has a nonzero probability if
x ∈ (0, ε) and θ is not almost surely equal to T0, we see that we also have (i’) but not (i)
(so that V (x, z) <∞ if and only if x ≥ ε or x = 0).

Remark 2.4 From the previous proof, we also observe that we have g = +∞ everywhere
except for x = 0 implies V = +∞ everywhere except for x = 0. This statement does not
require Condition (2.16).

We conclude this section by considering the linear case, which turns out to be degenerate.

Proposition 2.2 Assume that α ≥ 0 and let `(x) = x. Then V = g.

Proof. Observe that:

V (x, z) = Ex,z[ZT0 ]−W (x) where W (x) := sup
θ∈T0

ExXθ.

Since α ≥ 0, Xt∧T0 is a local supermartingale, bounded from below. By Fatou’s lemma,
this implies that ExXθ ≤ x for θ ≤ T0. 2

3 A verification result

Our general approach to solve the optimal detection problem is to exhibit a candidate
solution for the dynamic programming equation corresponding to the optimal stopping
problem (2.10) which is:

min {Lv, g − v} = 0, on Int(∆) (3.1)

v(0, z) = `(z) (3.2)

vz(z, z) = 0, (3.3)

where L is the second order differential operator

Lv(x) = v′′(x)− α(x)v′(x), (3.4)

and α is defined in (2.2). Notice that LS = 0. We do not intend to prove directly that V
satisfies this differential equation. Instead, we shall guess a candidate solution v of (3.1),
and show that v indeed coincides with the value function V by a verification argument.

From now on, we will assume that one of the equivalent relations of (2.14) is satisfied, so
that g and V are finite everywhere.
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In order to exhibit a solution of (3.1), we guess that there should exist a free boundary
γ(x) so that stopping is optimal in the region {z ≥ γ(x)}, while continuation is optimal
in the remaining region {z < γ(x)}. If such a stopping boundary exists, then the above
dynamic programming equation reduces to:

Lv(x, z) = 0 for 0 < z < γ(x) (3.5)

v(x, z) = g(x, z) and Lg(x, z) ≥ 0 for z ≥ γ(x) (3.6)

v(0, z) = `(z) (3.7)

vz(z, z) = 0. (3.8)

The verification step requires that the value function be C1 and piecewise C2 in order to
allow for the application of Itô’s formula. We then complement the above system by the
continuity and the smoothfit conditions

v(x, γ(x)) = g(x, γ(x)) (3.9)

vx(x, γ(x)) = gx(x, γ(x)) (3.10)

Our objective is to find a candidate v which satisfies (3.5) to (3.10) and an optimal
stopping boundary γ so as to apply the following verification result:

Theorem 3.1 Let γ be continuous and let v be a solution of (3.5) to (3.10), which is C1,0

and piecewise C2,1 w.r.t. (x, z) on ∆, bounded from below, such that v ≤ g on ∆ and v < g

on the continuation region {(x, z); 0 < x ≤ z and z < γ(x)}.
Then v = V and θ∗ = inf{t ≥ 0;Zt ≥ γ(Xt)} is an optimal stopping time.
Moreover if τ is another optimal stopping time, then θ∗ ≤ τ a.s.

Proof.
(i) We first prove that V ≥ v:
Let θ ∈ T0 and for n ∈ N, define θn = n∧θ∧ inf{t ≥ 0; |Zt| ≥ n}. Then from the assumed

regulrity of v, we may apply Itô’s formula to obtain:

v(x, z) = v(Xθn , Zθn)−
∫ θn

0
Lv(Xt, Zt)dt−

∫ θn

0
vx(Xt, Zt)σ(Xt)dWt −

∫ θn

0
vz(Xt, Zt)dZt

Taking expectations and using the fact that vz(Xt, Zt)dZt = vz(Zt, Zt)dZt = 0, Lv ≥ 0 and
v ≤ g:

v(x, z) ≤ Ex,zv(Xθn , Zθn)

≤ Ex,zg(Xθn , Zθn) = Ex,z[EXθn ,Zθn `(ZT0 −Xθn)] = Ex,z`(ZT0 −Xθn). (3.11)

Clearly as n→∞, θn → θ a.s. Notice that (0 ≤)`(ZT0 −Xθn) ≤ `(ZT0), which is integrable
by (2.14). Therefore, using Lebesgue’s dominated convergence theorem while sending n→
∞ in (3.11), we get:

v(x, z) ≤ Ex,z`(ZT0 −Xθ), for all θ ∈ T0,

and therefore v ≤ V .
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(ii) We next prove that V ≤ v:
If z ≥ γ(x), then v = g ≥ V .
Assume now that z < γ(x). Let θ∗ = inf{t ≥ 0; Zt ≥ γ(Xt)}. By the assumed regularity

on v, we have Lv(Xt, Zt) = 0 for t ∈ [0, θ∗). As before define θn = n∧ θ∗∧ inf{t ≥ 0; |Zt| ≥
n}, then it follows from Itô’s formula that:

v(x, z) = Ex,zv(Xθn , Zθn)

Since v is bounded from below and v ≤ g, we have |v| ≤ c + g for some constant c. Since
(0 ≤)`(ZT0−Xθn) ≤ `(ZT0), which is integrable by (2.14), (E[`(ZT0)|Xθn , Zθn ])n is uniformly
integrable, so (g(Xθn , Zθn))n is also uniformly integrable and therefore (v(Xθn , Zθn))n is
uniformly integrable too.

So we can claim the following:

v(x, z) = Ex,zv(Xθ∗ , Zθ∗) = Ex,zv(Xθ∗ , γ(Xθ∗)) = Ex,zg(Xθ∗ , γ(Xθ∗))

= Ex,z`(ZT0 −Xθ∗) ≥ V (x, z).

(iii) Finally we show the minimality of θ∗. Assume to the contrary that there exists τ
satisfying P(τ < θ∗) > 0 and Ex,z`(ZT0 −Xτ ) = infθ Ex,z`(ZT0 −Xθ) = V (x, z).

But on {τ < θ∗}, we have by assumption V (Xτ , Zτ ) < g(Xτ , Zτ ), while we always have
V (Xτ , Zτ ) ≤ g(Xτ , Zτ ). This leads to the following contradiction:

V (x, z) = Ex,z`(ZT0 −Xτ ) = Ex,zg(Xτ , Zτ ) > Ex,zV (Xτ , Zτ ) ≥ V (x, z),

where the last inequality follows immediately from the definition of V . 2

In the rest of this paper, our objective is to exhibit functions γ and v satisfying the
assumptions of the previous theorem. In view of (3.6), the stopping region satisfies

{(x, z) : z ≥ γ(x)} ⊂ Γ+ := {(x, z) : Lg(x, z) ≥ 0} . (3.12)

We therefore need to study the structure of the set Γ+.

In the subsequent paragraphs we shall first focus on quadratic loss functions. For general
loss functions, we shall provide some conditions which guarantee that the structure of the
solution agrees with that of the quadratic case.

4 The set Γ+ for a quadratic loss function

Throughout this section as well as sections 5 and 6, we consider the quadratic loss function

`(x) :=
1
2
x2 for x ≥ 0,

and we assume that the coefficient α satisfies the following additional condition:

either ∃K ≥ 0, for x ≥ K, α′(x) = 0, or, as x→∞, α′′(x) = ◦
(
[α2]′(x)

)
. (4.1)
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In order to study the set Γ+ defined by (3.12), we compute that:

Lg(x, z) = 1 + α(x)(z − x)−
(
2S′(x)− α(x)S(x)

) ∫ ∞
z

du

S(u)
, (x, z) ∈∆, (4.2)

which takes values in R ∪ {−∞}. Since α ≥ 0 and 2S′ − αS ≥ 2 by Remark 2.1, it follows
that for every fixed x ≥ 0, the function z 7−→ Lg(x, z) is strictly increasing on [x,∞). Now
since

∫∞
z

du
S(u) → 0 when z → ∞, we see that limz→∞ Lg(x, z) > 0 for any x ≥ 0. This

shows that Γ+ 6= ∅ and that Γ+ = Epi(Γ) := {(x, z) ∈∆; z ≥ Γ(x)} where

Γ(x) := inf {z ≥ x : Lg(x, z) ≥ 0} , (4.3)

Moreover, Γ+ \ graph(Γ) = Int(Γ+) ⊂ {(x, z) ∈∆; Lg(x, z) > 0} and Γ is continuous.

Denote:

Γ0 := Γ(0) and Γ∞ := sup{x > 0, Lg(x, x) < 0} ∈ (0,+∞]. (4.4)

We also directly compute that for x > 0:

∂2

∂x2
Lg(x, z) = −2α′(x) + α′′(x)(z − x)− (α2(x)S′(x)− α′′(x)S(x))

∫ ∞
z

du

S(u)
< 0

by the concavity, the non-decrease, and the positivity of α on (0,∞). This implies that the
function Γ is U -shaped in the sense of Proposition 4.2-(i) below.

We first isolate some asymptotic results that will be needed.

Proposition 4.1 Under Conditions (2.2), we have the following asymptotic behaviors, as
z →∞:

(i) S(z) ∼ S′(z)
α(z)

;

(ii)
∫ ∞
z

du

S(u)
∼ 1
S′(z)

,
∫ ∞
z

u

S(u)
du ∼ z

S′(z)
and

∫ ∞
z

u− z
S(u)

∼ 1
α(z)S′(z)

.

Proof. See Appendix. 2

Proposition 4.2 Under Conditions (2.2), we have: (i) Γ0 > 0 and there is a constant
ζ ≥ 0 such that Γ is decreasing on [0, ζ] and increasing on [ζ,+∞);
(ii) limx→+∞ Γ(x)− x = 0;
(iii) 0 < Γ0 < Γ∞, where Γ0 and Γ∞ were defined in (4.4).

Proof. (i): We first show that for x1 < x3, λ ∈ (0, 1) and x2 = λx1 + (1 − λ)x3, we have
Γ(x2) < max(Γ(x1),Γ(x3)).

Indeed, assuming to the contrary that Γ(x2) ≥ max(Γ(x1),Γ(x3)), it follows from the
strict concavity of Lg w.r.t. x and its non-decrease w.r.t. z that:

Lg(x2,Γ(x2)) > λLg(x1,Γ(x2)) + (1− λ)Lg(x3,Γ(x2))

≥ λLg(x1,Γ(x1)) + (1− λ)Lg(x3,Γ(x3)) ≥ 0
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By continuity of Lg, Lg(x2,Γ(x2)) > 0 implies that Γ(x2) = x2, which is in contradiction
with Γ(x2) ≥ Γ(x3) ≥ x3 > x2.

Since Γ(x) ≥ x, this implies the second part of (i).
Finally, we show that Γ0 = Γ(0) > 0. Since S(x) ∼ x as x → 0, we have

∫∞
0

du
S(u) = ∞,

and therefore Lg(x, z) < 0 on ∆ for z sufficiently small. In particular for sufficiently small
z > 0, we have Lg(0, z) < 0. Then Γ0 > 0 and by continuity of Lg, Lg(0,Γ0) = 0.

(ii): For an arbitrary a > 0, it follows from Proposition 4.1 that:

Lg(z − a, z) = 1 + aα(z − a)− S′(z − a)
S′(z)

+ ◦(1)

= 1 + aα(z − a)− e−
R z
z−a α(u)du + ◦(1)

where ◦(1)→ 0 as z →∞.
If limx→∞ α(x) = +∞, then S′(z−a)

S′(z) → 0 (as z →∞).

If limx→∞ α(x) = M > 0 then S′(z−a)
S′(z) ∼ e

−aM < 1.
In both cases, Lg(z − a, z) > 0 for z large enough, and so 0 ≤ Γ(z)− z < a.

(iii): It remains to prove that Γ0 < Γ∞.
Using Remark 2.1 (ii) and the fact that Lg(0,Γ0) = 0, we compute:

Lg(Γ0,Γ0) = 1− (2S′ − αS)(Γ0)
∫ ∞

Γ0

du

S(u)

< 1− 2
∫ ∞

Γ0

du

S(u)

= Lg(0,Γ0)− α(0)Γ0

= −α(0)Γ0 ≤ 0.

By continuity of Lg, this implies that Γ∞ > Γ0. 2

Remark 4.1 If z ≤ Γ0, then Lg(0, z) ≤ 0, therefore adapting the proof of Proposition
4.2-(iii), we see that Lg(z, z) < 0 for z ≤ Γ0.

Remark 4.2 The fact Γ0 < Γ∞ implies that, in the quadratic case, the increasing part of
Γ will never be reduced to a subset of the diagonal, or in other words that Γ(ζ) > ζ.

The figures below exhibit the two possible shapes of the function Γ and the location of
Γ+. Notice that in both cases Γ∞ can be finite or not. We refer the reader to section 7 for
examples of both cases.

We now give a result stronger than Proposition 4.2-(ii) above, concerning the behavior of
Γ at infinity. Recall that Γ∞ was defined by (4.4).

Proposition 4.3 Let the coefficient α satisfy Conditions (2.2) and (4.1). Then, there
exists Γmax > 0 such that:
- either for any x ≥ Γmax, Γ(x) > x

- or for any x ≥ Γmax, Γ(x) = x.
Moreover, if limx→∞ α(x) =∞, then Γ∞ <∞.

10



(a) ζ > 0 (Ornstein-Uhlenbeck process) (b) ζ = 0 (Brownian motion with negative drift)

Figure 1: The two possible shapes of Γ

Proof. By the definition of the scale function (2.3), for x > 0:

S(x) = S(1) +
S′(x)
α(x)

− S′(1)
α(1)

−
∫ x

1

(
1
α

)′
(u)S′(u)du. (4.5)

We then consider several cases:

Case 1:
∫∞

1 (1/α)′(u)S′(u)du > −∞. Then S(x) = A(x) + S′(x)
α(x) for some non-decreasing

function A which is bounded on [1,∞). We write A∞ := limx→∞A(x).
Case 1.1: If there exists K ≥ 0 such that A(x) = 0 for any x ≥ K, then, recalling that

LS = 0, we compute for x ≥ K:∫ ∞
x

du

S(u)
=
∫ ∞
x

α(u)du
S′(u)

=
1

S′(x)
,

and then:

Lg(x, x) = 1− [2S′(x)− α(x)S(x)]
∫ ∞
x

du

S(u)

= 1− S′(x)
1

S′(x)
= 0.

Consequently, for x ≥ K, Γ(x) = x.
Case 1.2: If on the other hand, A∞ 6= 0 or A∞ = 0 but α′(x) > 0 for any x ≥ 0, then

notice that if A∞ ≤ 0, then A(x) < 0 for any x, and if A∞ > 0, then A(x) > 0 for
sufficiently large x.

Let us prove that A′(x)→ 0 as x→∞. By definition: A′(x) = α′(x)S′(x)
α(x)2

. If α′(x) = 0 for
sufficiently large x, the conclusion is immediate. Otherwise, we compute:

A′′(x) =
α′′(x)α(x) + α′(x)α(x)2 − 2

(
α′(x)

)2
α(x)3

S′(x).

11



Using the fact that α′ = ◦(α2) and condition (4.1), we see that A′′(x) ∼ α′(x)S′(x)
α(x) > 0, as

x→∞. Therefore A′ is increasing for sufficiently large x, and as A is bounded, A′(x)→ 0.

Recalling that LS = 0, we compute:∫ ∞
x

du

S(u)
=
∫ ∞
x

du

A(u) + S′(u)
α(u)

=
∫ ∞
x

α(u)
S′(u)

du

1 +A(u) α(u)
S′(u)

=
1

S′(x)
−
∫ ∞
x

A(u)
α2(u)

[S′(u)]2
du+ ◦

(∫ ∞
x

A(u)
α2(u)

[S′(u)]2

)
.

Integrating by part:∫ ∞
x

A(u)
α2(u)

[S′(u)]2
du =

A(x)α(x)
[S′(x)]2

+
∫ ∞
x

α′(u)A(u) + α(u)A′(u)
[S′(u)]2

−
∫ ∞
x

A(u)
α2(u)

[S′(u)]2
du,

so that: ∫ ∞
x

du

S(u)
=

1
S′(x)

[
1− A(x)α(x)

2S′(x)
+ ◦

(
A(x)α(x)
S′(x)

)]
where we used the fact that (1/α)′ → 0, see Remark 2.1, and that A′(x)→ 0. Then:

Lg(x, x) = 1− [2S′(x)− α(x)S(x)]
∫ ∞
x

du

S(u)

= 1− (S′(x)−A(x)α(x))
1− A(x)α(x)

2S′(x) + ◦
(
A(x)α(x)
S′(x)

)
S′(x)

=
3A(x)α(x)

2S′(x)
+ ◦

(
A(x)α(x)
S′(x)

)
Consequently, for sufficiently large x, if A∞ > 0, Γ(x) = x, while if A∞ ≤ 0, Γ(x) > x.

Case 2:
∫∞

1

(
1
α

)′ (u)S′(u)du = −∞. Then α′(x) > 0 for all x ≥ 0.
We compute that:∫ x

1

(
1
α

)′
(u)S′(u)du =

[(
1
α

)′
(u)

S′(u)
α(u)

]x
1

−
∫ x

1

[
1
α

(
1
α

)′]′
(u)

S′(u)
α(u)

du.

By (4.1), we observe that:

1
α

[
1
α

(
1
α

)′]′
=
αα′′ − (α′)2

α5
= ◦

(
α′

α2

)
,

and therefore:∫ x

1

(
1
α

)′
(u)S′(u)du =

(
1
α

)′
(x)

S′(x)
α(x)

+ ◦
((

1
α

)′
(x)

S′(x)
α(x)

)
.

Plugging this in (4.5), we see that:

S(x) =
S′(x)
α(x)

[
1−

(
1
α

)′
(x) + ◦

((
1
α

)′
(x)
)]

,
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which implies that:∫ ∞
x

du

S(u)
=

1
S′(x)

+
∫ ∞
x

α(u)
S′(u)

(
1
α

)′
(u)du+ ◦

(∫ ∞
x

α(u)
S′(u)

(
1
α

)′
(u)du

)
.

Integrating by part and using (4.1), this provides:∫ ∞
x

α(u)
S′(u)

(
1
α

)′
(u)du =

(
1
α

)′
(x)

1
S′(x)

+
∫ ∞
x

(
1
α

)′′
(u)

du

S′(u)

=
(

1
α

)′
(x)

1
S′(x)

+ ◦
((

1
α

)′
(x)

1
S′(x)

)
.

Hence:

Lg(x, x) = 1− [2S′(x)− α(x)S(x)]
∫ ∞
x

du

S(u)

= 1−
[
1 +

(
1
α

)′
(x) + ◦

((
1
α

)′
(x)
)][

1 +
(

1
α

)′
(x) + ◦

((
1
α

)′
(x)
)]

= −2
(

1
α

)′
(x) + ◦

((
1
α

)′
(x)
)
.

Since (1/α)′ < 0, this implies that for sufficiently large x, Lg(x, x) > 0 and therefore
Γ(x) = x.

It remains to prove that if limx→∞ α(x) =∞, then Γ∞ <∞.
Let x ≥ 1, since α is non-decreasing, we have:

S′(x) = e
R x
0 α(u)du ≥ eα(x−1).

Since α′ is non-increasing and non-negative, α′ is bounded. Therefore, there exists K > 0,
such that 0 ≤ α(x)− α(x− 1) ≤ K, and therefore S′(x) ≥ eα(x)−K for x ≥ 1.

On the other hand, limx→∞ α(x) = ∞ implies that α(x)2 = ◦(eα(x)−K), which means
that S′(x)

α(x)2
→∞. Finally, as x→∞, we get:

α′(x) = ◦
(
−
(

1
α

)′
(x)S′(x)

)
.

As α is not bounded, the left-hand side is not integrable at infinity, so the right-hand side
is also not integrable. In other words,

∫∞
1 (1/α)′(u)S′(u)du = −∞, and from Case 2 above,

we have Γ∞ <∞. 2

5 The stopping boundary in the quadratic case

We now turn to the characterization of the stopping boundary γ. Following Proposition
4.2-(i), we define:

Γ↓ = Γ|[0,ζ] and Γ↑ = Γ|[ζ,∞)

the restrictions of Γ to the intervals [0, ζ] and [ζ,∞).
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5.1 The increasing part of the stopping boundary γ

Our objective is to find a solution v of (3.5)–(3.10) on {(x, z) ∈ ∆; x < z < γ(x)}. First
by (3.5), v is of the form:

v(x, z) = A(z) +B(z)S(x).

Then, on the interval where γ is one-to-one, the continuity and smoothfit conditions (3.9)
and (3.10) imply that

v(x, z) = g(γ−1(z), z) +
gx(γ−1(z), z)
S′(γ−1(z))

[S(x)− S(γ−1(z))].

Finally, the Neumann condition (3.8), implies that the boundary γ satisfies the following
ODE:

γ′ =
Lg(x, γ)

1− S(x)
S(γ)

(5.1)

In the sequel, we take this ODE (with no intial condition !) as a starting point to
construct the boundary γ. Notice that this ODE has infinitely many solutions, as the
Cauchy-Lipschitz condition is locally satisfied whenever (5.1) is complemented with the
condition γ(x0) = z0 for any 0 < x0 < z0. This is a similar feature as in Peskir [11]. The
following result selects an appropriate solution of (5.1).

Proposition 5.1 Let the coefficient α satisfy Conditions (2.2) and (4.1). Then, there
exists a continuous function γ defined on R+ with graph {(x, γ(x)) : x ∈ R+} ⊂ ∆, such
that:
(i) on the set {x > 0 : γ(x) > x}, γ is a C1 solution of the ODE (5.1),
(ii) {(x, γ(x)) : x ≥ ζ} ⊂ Γ+, and {(x, γ(x)) : x > ζ and γ(x) > x} ⊂ Int(Γ+),
(iii) if Γ∞ <∞, then γ(x) = x for all x ≥ Γ∞,
(iv) γ(x)− x −→ 0 as x→∞.

The remaining part of this section is dedicated to the proof of this result. We first
introduce some notations. We recall from Remark 4.2 that the graph of Γ↑ is not reduced
to the diagonal and therefore

b := inf{x ≥ 0 : Γ(x) = x} ∈ (ζ,∞] (5.2)

where b may take infinite value. We also introduce

D− := {x > ζ : Lg(x, x) < 0} ⊃ (ζ, b), (5.3)

and for all x0 ∈ D−:

d(x0) := sup{x ≤ x0 : Lg(x, x) ≥ 0} and u(x0) := inf{x ≥ x0; Lg(x, x) ≥ 0}, (5.4)

with the convention that d(x0) = 0 if {x ≤ x0 : Lg(x, x) ≥ 0} = ∅ and u(x0) = ∞ if
{x ≥ x0; Lg(x, x) ≥ 0} = ∅. Since Lg is continuous and x0 ∈ D−, d(x0) < x0 < u(x0) ≤ ∞.
Notice that if x0 ∈ (ζ, b), then d(x0) = 0.
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Let x0 ∈ D− be an arbitrary point. For all z0 > x0, we denote by γz0x0
the maximal

solution of the Cauchy problem complemented with the condition γ(x0) = z0, and we
denote

(
`z0x0
, rz0x0

)
the associated (open) interval. When x0 will be fixed, we will simply

denote γz0 , `z0 and rz0 . Notice that since the right-hand side of ODE (5.1) is locally
lipschitz on the set {(x, γ), 0 < x < γ}, the maximal solution will be defined as long as
0 < x < γ.

The following result provides more properties on the maximal solutions.

Lemma 5.1 Assume that α satisfies Conditions (2.2) and let x0 ∈ D− be fixed.
(i) For all z > x0, `z ≤ d(x0) and if `z > 0, then Lg(`z, `z) ≥ 0;
(ii) for all z ∈ (x0,Γ(x0)], Lg(x, γz(x)) < 0 for any x ∈ (x0, r

z);
(iii) there exists D > 0, such that rz = +∞ for all z ≥ D.

Before proceeding to the proof of this result, we turn to the main construction of the
stopping boundary γ. Let

Z(x0) :=
{
z > x0 : Lg

(
x, γzx0

(x)
)
< 0 for some x ∈

[
x0, r

z
x0

)}
, z∗(x0) := sup Z(x0). (5.5)

Moreover, whenever z∗(x0) <∞, we denote

γ∗x0
:= γz

∗(x0)
x0

, `∗x0
:= `z

∗(x0)
x0

, r∗x0
:= rz

∗(x0)
x0

, and I∗x0
:=
(
`∗x0
, r∗x0

)
. (5.6)

Lemma 5.2 Assume that α satisfies Conditions (2.2) and let x0 be arbitrary in D−. Then
(i) z∗(x0) ∈ (Γ(x0),∞),

(
d(x0), u(x0)

)
⊂ I∗x0

, and the corresponding maximal solution γ∗x0

has a positive derivative on the interval I∗x0
∩ (ζ,∞).

(ii) For x0 ≤ x1 ∈ D−, we have
• either I∗x0

∩ I∗x1
= ∅,

• or I∗x0
⊂ I∗x1

and γ∗x0
≤ γ∗x1

on I∗x0
.

Proof. (i) By Lemma 5.1 (iii), there exists D = D(x0) such that for any z ≥ D, rzx0
=∞.

If Lg
(
x1, γ

z
x0

(x1)
)
< 0 for some x1 ≥ x0, then by (5.1), γzx0

is decreasing in a neighborhood
of x1 and as long as

(
x, γzx0

(x)
)
∈ Int(Γ−). Since x1 ≥ x0 > ζ, Γ is increasing on [x1,∞), so

that γzx0
is decreasing on [x0, r

z), which implies that rzx0
≤ z. Therefore Z(x0) is bounded by

D, and z∗(x0) <∞. Since x0 ∈ D−, we have Γ(x0) ∈ Z(x0) and therefore z∗(x0) ≥ Γ(x0).
We next assume to the contrary that z∗(x0) = Γ(x0) and work towards a contradiction.

Notice that D− is an open set as a consequence of the continuity of the function Lg.
Then there exists ε > 0 such that (x0, x0 + 2ε) ⊂ D− ∩ (x0, r

∗
x0

) and d(x) = d(x0) for any
x ∈ (x0, x0 + ε). Let xε := x0 + ε and zε := Γ(xε) > Γ(x0). By Lemma 5.1 (i), we have
`z
ε

xε ≤ d(x0) < x0, and it follows from Lemma 5.1 (ii) that γzεxε is decreasing on
(
x0, r

zε
xε

)
.

Then:
γzεxε(x0) > γzεxε(xε) = Γ(xε) > Γ(x0) = z∗. (5.7)

On the other hand, since γγ
zε
xε (x0)
x0 (xε) = zε = Γ(xε), it follows from Lemma 5.1 (ii) that

γz
ε

xε(x0) ∈ Z(x0), implying that z∗ ≥ γzεxε(x0) ∈ Z(x0), a contradiction to (5.7).
A similar argument proves that (x, γ∗(x)) ∈ Int(Γ+) for x ∈ I∗x0

∩ [ζ,∞), which implies
r∗x0
≥ u(x0) (possibly infinite). Using (5.1), we see that γ has a positive derivative on the

same interval. Finally, Lemma 5.1-(i) implies that `∗x0
≤ d(x0).
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2) Let x0 < x1 in D− and assume that there exists x2 ∈ I∗x0
∩ I∗x1

. If γ∗x0
(x2) = γ∗x1

(x2),
then the one-to-one property of the flow and the maximality of I∗ imply that I∗x0

= I∗x1

and γ∗x0
= γ∗x1

. If γ∗x0
(x2) < γ∗x1

(x2), the one-to-one property of the flow implies that
γ∗x0

< γ∗x1
on I∗x0

∩ I∗x1
and therefore the maximality of I∗x1

implies that I∗x0
⊂ I∗x1

. By the
definition of z∗(x1) and the continuity of the flow with respect to initial data, there exists
z < z∗(x1), such that γ∗x0

(x2) < γzx1
(x2) < γ∗x1

(x2) and z ∈ Z(x1). For the same reasons
as before, we have I∗x0

⊂ Izx1
and γ∗x0

< γzx1
< γ∗x1

on I∗x0
. Therefore γzx1

(x0) ∈ Z(x0)
while γzx1

(x0) > z∗(x0) = γ∗x0
(x0), which is impossible. A similar argument can be used if

γ∗x0
(x2) > γ∗x1

(x2). 2

We are now ready for:

Proof of Proposition 5.1 We first define γ and then prove the announced properties.
1. Let

D :=
⋃

x0∈D−
I∗(x0) ⊃ D−. (5.8)

By Lemma 5.2, for any x and y in D−, we either have I∗x = I∗y or I∗x ∩ I∗y = ∅. Therefore,
assuming the axiom of choice, there exists a subset D−0 of D− such that D =

⋃
x0∈D−0

I∗(x0)
and for any x, y ∈ D−0 , x 6= y implies that I∗x ∩ I∗y = ∅.

We now define the function γ on R+ \ {0} by:

γ(x) :=

{
γ∗x0

(x) if x ∈ I∗x0
, for some x0 ∈ D−

x otherwise.
(5.9)

By Lemma 5.2, this definition does not depend on the choice of D−.
2. We first prove that γ is continuous on R+. This is only nontrivial at the endpoints
`∗x0

and r∗x0
, x0 ∈ D−. Recalling that γ is increasing on I∗x0

, we see that both limits exist.
By the maximality of I∗(x0), it is immediate that limr∗x0

γ = r∗x0
and, whenever `∗x0

> 0,
lim`∗x0

γ = `∗x0
. If `∗x0

= 0, which is the case for x0 ∈ (ζ, b), then the limit also exists
and in fact is positive since Lg(x, γ(x)) < 0 for any x > 0 such that γ(x) < ζ. Setting
γ(0) := limx→0 γ(x), we obtain a continuous function γ on R+.
3. Proposition 5.1 (i) follows immediately from Lemma 5.2. To prove (ii), we first notice
that {x ≥ ζ : γ(x) = x} = R+ \ D ⊂ R+ \ D−, so that Lg(x, x) ≥ 0 on the set {x ≥
ζ : γ(x) = x}. On the set {x > ζ : γ(x) > x}, since γ has a positive derivative and satisfies
(5.1), we have Lg(x, γ(x)) > 0. Finally, since for x0 ∈ (ζ, b), where b was defined by (5.2),
d(x0) = 0, Lemma 5.2 and the continuity of Lg imply that Lg(ζ, γ(ζ)) ≥ 0.
4. We next prove (iii). Assume Γ∞ <∞ and let x0 ∈ D− be arbitrary. Then by continuity
of Lg, Lg(Γ∞,Γ∞) = 0, and therefore x0 < Γ∞. Assume that r∗x0

> Γ∞, and let us work
towards a contradiction. Then by continuity of the flow with respect to the initial data,
there exists ε > 0 such that for any z ∈

(
z∗(x0) − ε, z∗(x0)

)
, the function γzx0

is defined

on [x0,
Γ∞+r∗x0

2 ]. By Lemma 5.1 (ii), we deduce that (x, γzx0
(x)) ∈ Γ+ on the same interval.

By the definition of Γ∞ and recalling that ∂
∂zLg > 0, we get that z 6∈ Z(x0). By the

arbitraryness of z in (z∗(x0)− ε, z∗(x0)), this contradicts the definition of z∗(x0).
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5. We finally prove (iv). First, the claim is obvious when D is bounded, as γ(x) = x for
x ≥ supD. We then concentrate on the case where D is not bounded. From Proposition
4.3, D− is either bounded or Lg(x, x) < 0 for any x ∈ [Γmax,∞), and by Lemma 5.2,
r∗x0
≥ u(x0). In both cases, there exists x0 ∈ D− such that r∗x0

= ∞. To complete the
proof, we now intend to show that, for a > 0 and x > x0 large enough, γ(x) ≤ x+ a.

Using Proposition 4.1, we compute:

Lg(x, x+ a) = 1 + aα(x)− e−
R x+a
x α(u)du + ◦(1). (5.10)

- If limx→∞ α(x) = ∞, then, for any ε > 0, we get that Lg(x, x + a) > 1 + ε for x large
enough.
- If limx→∞ α(x) = M > 0, then Lg(x,x+a)

1− S(x)
S(x+a)

= 1−e−aM+aM
1−e−aM + ◦(1), so that for any ε ∈(

0, aM
1−e−aM

)
, we get that Lg(x,x+a)

1− S(x)
S(x+a)

> 1 + ε for x large enough.

In both cases, we can find a sufficiently small ε > 0, such that Lg(x,x+a)

1− S(x)
S(x+a)

> 1 + ε for any

sufficiently large x, say x ≥ x1. We now assume that γ(x1) > x1 + a and work towards a
contradiction. Since γ(x) > x on [x0,+∞), using the continuity of the flow with respect to
the initial data, we can find z < z∗(x0) such that γzx0

(x) > x on [x0, x1] and γzx0
(x1) > x1+a.

Using (5.10) together with (5.1), we therefore have for x ∈ [x1,+∞):

γzx0
(x)− γzx0

(x1) ≥ (1 + ε)(x− x1)

and so γzx0
(x) > (1 + ε)(x− x1) + x1 + a ≥ x+ a,

so that rz =∞ and the same holds for any y ∈ [z, z∗(x0)], which contradicts the definition
of z∗(x0) as sup Z(x0). 2

We finally turn to the proof of Lemma 5.1. Let

Γ− := {(x, z) ∈∆ : Lg(x, z) ≤ 0} . (5.11)

Proof of Lemma 5.1 (i) The right-hand side of (5.1) is locally Lipschitz as long as
0 < x < γzx0

(x). Now γzx0
is non-increasing if (x, γzx0

(x)) ∈ Γ−. Therefore, since d(x0) <
x0 < u(x0) and Γ(x) > x for any x ∈ D− ⊃

(
d(x0), u(x0)

)
, the minimality of `zx0

implies
that `zx0

≤ d(x0) and that `zx0
6∈ D−.

(ii) Since x0 > ζ, the function Γ is increasing on [x0,+∞), while by (5.1), for any z > x0, γzx0

is non-increasing as long as (x, γx0(x)) ∈ Γ−. Therefore for any z ∈ (x0,Γ(x0)), (x, γzx0
(x))

remains in Int(Γ−) on
[
x0, r

z
x0

)
.

Assume now that z = Γ(x0). Since Γ(x0) > x0, Γ satisfies Lg(x,Γ(x)) = 0 in a neigh-
borhood of x0. Since ∂

∂zLg > 0 on ∆, while ∂
∂xLg(x,Γ(x)) > 0 as soon as Γ(x) > x, the

implicit functions theorem implies that Γ is C1 with positive derivative in a neighborhood
of x0. If z = Γ(x0), (γzx0

)′(x0) = 0 by (5.1), therefore γ′ − Γ′ is negative in a neighborhood
of x0, and we can conclude as in the case z < Γ(x0) that

(
x, γzx0

(x)
)
∈ Int(Γ−) on

(
x0, r

z
x0

)
.

(iii) Let ε > 0 be given. From Proposition 4.1-(ii), we see that:

Lg(x, (1 + ε)x) = 1 + εxα(x)− S′(x)
S′((1 + ε)x)

+ ◦(1)

= 1 + εxα(x)− e−
R x+εx
x α(v)dv + ◦(1), as x→∞.
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Since xα(x)→ +∞, this implies that:

Lg(., (1 + ε).) ≥ 1 + 3ε, on [A,∞) for some A ≥ 0. (5.12)

In particular, (A, (1 + ε)A) ∈ Int(Γ+). Let D := max((1 + ε)A,Γ0). Since Γ is U-shaped,
it follows that [0, A] × [D,∞) ⊂ Γ+. Since γzx0

is non-decreasing as long as (x, γzx0
(x)) ∈

Int(Γ+), by (5.1), it follows that rzx0
> A and γzx0

(A) > (1 + ε)A for all z ≥ D.
In order to complete the proof, we now show that:

γzx0
(x) ≥ (1 + ε)x, for all x ≥ A and z ≥ D.

To see this, assume to the contrary that γzx0
(ξ) ≤ (1 + ε)ξ for some ξ > A and define:

x1 := inf{x > A; γzx0
(x) = (1 + ε)x)}.

By continuity of γzx0
, we have A < x1 ≤ ξ, and therefore Lg(x1, (1 + ε)x1) ≥ 1 + 3ε by

(5.12). Since Lg is also continuous, there is a neighborhood O of (x1, (1 + ε)x1) such that
for (x, z) ∈ O, Lg(x, z) ≥ 1 + 2ε. We then deduce that there exists η > 0 such that:

(γzx0
)′(x) ≥ Lg(x, γz(x)) ≥ 1 + 2ε for any x ∈ [x1 − η, x1 + η],

and then, for x ∈ (x1 − η, x1) ∩ [A,∞):

γzx0
(x) ≤ γzx0

(x1)− (1 + 2ε)(x1 − x) = (1 + ε)x1 − (1 + 2ε)(x1 − x) < (1 + ε)x.

Since γzx0
(A) > (1 + ε)A, this contradicts the definition of x1. 2

5.2 The decreasing part

The problem now is that there is no reason for the function γ constructed in the previous
paragraph to be entirely in Γ+ as it can cross graph(Γ↓). In Section 7, numerical computa-
tions suggest that this is indeed the case in the context of an Ornstein-Uhlenbeck process.
In fact, the boundary is in general made of two parts as shown on the plot below. There-
fore we need to consider the area that lies between the axis {x = 0} and graph(γ). While
the right part of γ is characterized by the ODE of the previous paragraph because of the
Neumann condition, here we must take into account the Dirichlet condition (3.7).

Therefore, we consider the following problem, for a fixed z > 0:

f
(
x(z), z

)
= 0, where f(x, z) = g(x, z)− gx(x, z)

S(x)
S′(x)

− z2

2
. (5.13)

Proposition 5.2 Assume that α satisfies Conditions (2.2) and that Γ↓ is not degenerate
(i.e. ζ > 0). Then there exists x∗ > 0 and a function γ↓ defined on [0, x∗], which is C0 on
[0, x∗], C1 with negative derivative on (0, x∗) and such that:
(i) ∀x ∈ [0, x∗], f(x, γ↓(x)) = 0
(ii) ∀x ∈ (0, x∗), (x, γ↓(x)) ∈ Int(Γ+)
(iii) γ↓(0) = Γ0

(iv) (x∗, γ↓(x∗)) ∈ graph(Γ↑)
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Figure 2: On the left part, the graph of γ is inside Int(Γ−) and γ is decreasing.

In the proof of Proposition 5.2, we will use the following identity, which comes from direct
calculation and the fact that LS = 0:

for all (x, z) ∈∆,
∂

∂x

(
gx(x, z)
S′(x)

)
=
Lg(x, z)
S′(x)

. (5.14)

Proof. By definition of g and S, for any z, f(0, z) = 0. Then:

fx(x, z) = gx(x, z)− S(x)
Lg(x, z)
S′(x)

− gx(x, z) = −S(x)
Lg(x, z)
S′(x)

.

Therefore, fx(x,Γ0) < 0 for any x ∈]0,Γ−1
↑ (Γ0)], thus f(x,Γ0) < 0 if x ∈]0,Γ−1

↑ (Γ0)]. On
the other hand, if z < Γ0, then f(x, z) > 0 for any x ∈ (0,Γ−1(z)], where Γ−1(z) > 0.

By continuity of f , there exists ε > 0 and x > 0 such that for any z ∈]Γ0 − ε,Γ0],
f(x, z) < 0. Therefore there exists x ∈]Γ−1

↓ (z),Γ−1
↑ (z)] satisfying f(x, z) = 0. Let z0 be in

such a neighborhood and let x0 ∈]Γ−1
↓ (z0),Γ−1

↑ (z0)] satisfying f(x0, z0) = 0. By definition,
(x0, z0) ∈ Int(Γ+).

We consider now the following Cauchy problem:

γ′↓(x) =
Lg(x, γ↓(x))S(x)

S(x)− xS′(x)− (S(x))2

S(γ↓)

, (5.15)
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with the additional condition γ↓(x0) = z0. ODE (5.15) is obtained by a formal derivation
of the equation f(x, γ(x)) = 0. Indeed, assuming that γ is C1, we see that:

fx(x, γ(x)) + γ′(x)fz(x, γ(x)) = 0

We compute:

fz(x, z) = gz(x, z)− gxz(x, z)
S(x)
S′(x)

− z

= z − x− S(x)
S(z)

(z − x) +
S(x)
S′(x)

(
1 +

S′(x)(z − x)
S(z)

− S(x)
S(z)

)
− z

= −x+
S(x)
S′(x)

− (S(x))2

S′(x)S(z)
.

So we get:

γ′
[
−xS′(x) + S(x)− (S(x))2

S(γ)

]
= S(x)Lg(x, γ).

As long as x > 0, S(x) − xS′(x) − (S(x))2

S(γ↓)
≤ S(x) − xS′(x) < 0, so the Cauchy problem

is well defined (since 0 < x0 ≤ z0). The maximal solution will be defined on an interval
(x−, x+), with x0 ∈ (x−, x+). We also have γ′↓ < 0 as long as (x, γ↓(x)) ∈ Int(Γ+) and
(x0, z0) ∈ Int(Γ+), so we have graph(γ↓) ∩ Γ 6= ∅.

Since ∂
∂zLg > 0, ∂2

∂x2Lg < 0 and Lg(x,Γ(x)) = 0 on [0, ζ], the implicit functions theorem
implies that Γ↓ is C1 with negative derivative. We also have if (xΓ, zΓ) ∈ graph(γ↓) ∩ Γ,
then γ′↓(xΓ) = 0. Therefore (xΓ, zΓ) can only be on graph(Γ↑). This implies that x− = 0
and we can define x∗ = inf{x ≥ x0, (x, γ↓(x)) ∈ Γ}. γ↓ is defined on (0, x∗+ ε) for a certain
ε > 0 and on (0, x∗), (x, γ↓(x)) ∈ Int(Γ+). Using (5.15), γ′ is negative on (0, x∗).

By construction f(x, γ↓(x)) = constant = f(x0, z0) = 0, (x, γ↓(x)) ∈ Γ+ and (x∗, γ↓(x∗)) ∈
graph(Γ↑).

Finally, since γ↓ is decreasing it has a limit at 0. The fact that (x, γ↓(x)) ∈ Γ+ implies
that γ↓(0) ≥ Γ0, and if we had γ↓(0) > Γ0, then by continuity of γ↓, there would exist
x ∈ (0,Γ−1

↑ (Γ0)], such that f(x,Γ0) = 0, which is impossible. So we have the result. 2

The function γ↓ defined in the previous proposition will be the second part of our bound-
ary. We denote by γ↑ the boundary constructed in the previous paragraph. We now check
that the two boundaries γ↑ and γ↓ do intersect. This is provided in the following proposition.

Proposition 5.3 We have either γ↑ is increasing on [0,+∞), or |graph(γ↓)∩graph(γ↑)| =
1. In the first case we write x̄ = 0 and z̄ = γ↑(0). In the second case, we write (x̄, z̄) =
graph(γ↓)∩graph(γ↑). In both cases we have (x̄, z̄) ∈ Γ+ and {(x, γ↑(x)); x > x̄ and γ↑(x) >
x} ⊂ Int(Γ+).

Proof. γ↑ is increasing as long as Lg(x, γ↑(x)) > 0. By Proposition 5.1, if we do not have
γ↑ increasing on [0,+∞), then there exists x0 ≤ ζ such that Lg(x0, γ↑(x0)) = 0 while γ↑
is increasing on (x0,+∞). Since Γ↓ is decreasing on (0, ζ) while γ↑ is increasing as long as
(x, γ↑(x)) ∈ Int(Γ+), (x, γ↑(x)) ∈ Γ− on (0, x0).
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On the other hand, γ↓ is defined on [0, x∗], decreasing, continuous, and (x, γ↓(x)) ∈
Int(Γ+) on (0, x∗). Therefore we have |graph(γ↓) ∩ graph(γ↑)| = 1, this intersection is in
Γ+ and by construction the last property is immediate.

If γ↑ is increasing on [0,+∞), then (x, γ↑(x)) ∈ Γ+ for all x > 0, so by continuity of γ↑
and since Γ+ is a closed set, it is still true for x = 0. 2

From now on, we write γ the concatenation of γ↓ and γ↑, which is continuous and piecewise
C1:

γ(x) =

{
γ↓(x) if x < x̄

γ↑(x) if x ≥ x̄

We also introduce:

φ↓ = γ−1
↓ and φ↑ = γ−1

↑ . (5.16)

Notice that Proposition 5.1 (respectively Proposition 5.2) implies that φ↑ (resp. φ↓) is C1

on {z > z̄, φ↑(z) < z} (resp. on (z̄,Γ0)), with positive (resp. negative) derivative.
Notice that if γ↓ is degenerate, then γ = γ↑.

6 Definition of v and verification result

Now we are able to define our candidate function v and we will prove that it is the value
function V defined by (2.7).

Let us first decompose ∆ into four different sets. We define:

A1 = {(x, z), x ∈ [0, x̄[ and z̄ < z < γ(x)}
A2 = {(x, z), x ≥ x̄ and z̄ < z < γ(x)}
A3 = {(x, z), 0 ≤ x ≤ z ≤ z̄}
A4 = {(x, z), x ≥ 0 and z ≥ γ(x)}.

(A1, A2, A3, A4) is a partition of ∆. Notice that if (x, z) ∈ A2, then by Proposition 5.1-(iii),
x ≤ Γ∞, and recall that x̄ < z̄ were defined in Proposition 5.3, while φ↓ and φ↑ were defined
by (5.16). Notice also that A2 is not necessarily connected.

We refer to Figure 3 for a better understanding of the different areas. Let

K :=
∫ ∞
z̄

u

S(u)
du− gx(x̄, z̄)

S′(x̄)
, (6.1)
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we define v in the following way:

v(x, z) =
z2

2
+ gx(φ↓(z), z)

S(x)
S′(φ↓(z))

if (x, z) ∈ A1, (6.2)

v(x, z) = g(φ↑(z), z) + gx(φ↑(z), z)
S(x)− S(φ↑(z))

S′(φ↑(z))
if (x, z) ∈ A2, (6.3)

v(x, z) =
z2

2
+ S(x)

[∫ ∞
z

u

S(u)
du−K

]
if (x, z) ∈ A3, (6.4)

v(x, z) = g(x, z) if (x, z) ∈ A4. (6.5)

Figure 3: The different areas

Theorem 6.1 Let the coefficient α satisfy Conditions (2.2) and (4.1). Let γ be given by
Proposition 5.1 and v be defined by (6.2) to (6.5). Then v = V and θ∗ = inf{t ≥ 0;Zt ≥
γ(Xt)} is an optimal stopping time.
Moreover if τ is another optimal stopping time, then θ∗ ≤ τ a.s.

Proof. From Proposition 5.1, Lemmas 6.1 and 6.2 below and Propositions 6.1 and 6.2
below, v and γ satisfy the assumptions of Theorem 3.1. 2

First we need to prove that v is sufficiently regular, in order to be able to apply Itô’s
formula. We denote by Ā the closure of a set A.
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Lemma 6.1 v is C0 w.r.t (x, z), C1 w.r.t x and piecewise C2,1 w.r.t. (x, z). More precisely,
except on ∪i 6=j(Āi ∩ Āj), it is C2,1.

Proof. From the definition of v, φ↓ and φ↑, it is immediate that v can be extended as a
C2,1 function on any Āi.

Let us write vi the expression of v on Āi. Since φ↓ satisfies (5.13), it is immediate to see
that v is C0 w.r.t. (x, z) and C1 w.r.t. x on the boundary (v1 with v4 and v2 with v4). On
z = z̄, it is easy to check that the expressions of v2 and v3 coincide. It is also true for v1

and v3 since φ↓ satisfies (5.13) and x̄ = φ↓(z̄). It is straightforward that it is also C1 and
even C2 w.r.t x. 2

We now show that v satisfies the limit conditions.

Lemma 6.2 ∀z ≥ 0, v(0, z) = z2

2 and vz(z, z) = 0.

Proof. Since S(0) = 0, v(0, z) = z2

2 is immediate.
For (z, z) ∈ Int(A4), since gz(z, z) = 0, we have vz(z, z) = 0. For (z, z) ∈ Int(A3)

it is immediate that vz(z, z) = 0. For (z, z) ∈ Int(A2), since γ2 satisfies ODE (5.1),
φ′↑(z)Lg(φ↑(z), z) = 1− S(φ↑(z))

S(z) . We then compute:

vz(z, z) = gz(φ↑(z), z) + gxz
S(z)− S(φ↑(z))

S′(φ↑(z))
+ φ′↑(z)Lg(φ↑(z), z)

S(z)− S(φ↑(z))
S′(φ↑(z))

= −
(

1−
S(φ↑(z))
S(z)

)
S(z)− S(φ↑(z))

S′(φ↑(z))
+
(

1−
S(φ↑(z))
S(z)

)
S(z)− S(φ↑(z))

S′(φ↑(z))
= 0.

To complete the proof, we need to show that vz(z̄, z̄) = 0 and vz(Γ∞,Γ∞) = 0 if Γ∞ <∞.
The previous computations and the definition of v on A3 and A4 show that at those points,
vz(z, z) has right and left limits that are both equal to 0, so we have the result. 2

Proposition 6.1 Let the coefficient α satisfy Conditions (2.2) and (4.1). Then the function
v is bounded from below and limz→∞ v(z, z)− g(z, z) = 0.

Proof. If Γ∞ <∞, it is immediate since in this case, by Proposition 5.1-(iii), v = g outside
a compact set, v is continuous and g is non-negative. So let us focus on the case Γ∞ =∞.
If (4.1) is satisfied, by Proposition 4.3, we know that α is bounded. We write α ≤M .

We first prove that v is bounded from below and that v(z, z)−g(φ↑(z), z)→ 0 as z →∞.
A1 is bounded because of the definition of γ↓, and A3 is bounded by definition. Since v = g

on A4 and g ≥ 0, we only need to check that v is bounded from below on A2.
On the set {(x, γ↑(x)); x ∈ [x̄,∞)}, v = g, and for (x, z) ∈ A2, we have:

v(x, z) = g(φ↑(z), z) + gx(φ↑(z), z)
S(x)− S(φ↑(z))

S′(φ↑(z))
. (6.6)

In particular, we see that for each z, v(., z) is monotonic on [φ↑(z), z]. Therefore, since
v(φ↑(z), z) ≥ g(φ↑(z), z) ≥ 0, it is sufficient to check that v is bounded from below on the
diagonal {(z, z); z ∈ [x̄,∞)}.
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We compute:

gx(φ↑(z), z) = −(z − φ↑(z)) + S′(φ↑(z))
∫ ∞
z

u− φ↑(z)
S(u)

du− S(φ↑(z))
∫ ∞
z

du

S(u)
.

From Proposition 5.1 we know that limx→∞ γ↑(x) − x = 0, so that limz→∞ z − φ↑(z) = 0.
Using Proposition 4.1, the fact that φ↑(z) < z since Γ∞ = ∞, and the increase of S′, we
have as z →∞:

S′(φ↑(z))
∫ ∞
z

u− φ↑(z)
S(u)

du ∼ S′(φ↑(z))
z − φ↑(z)
S′(z)

= O(1),

S(φ↑(z))
∫ ∞
z

du

S(u)
∼

S′(φ↑(z))
α(φ↑(z))S′(z)

= O(1),

so that gx(φ↑(z), z) = O(1).
Since α ≤M and S′ is increasing:

S′(z) = S′(φ↑(z))e
R z
φ↑(z)

α(u)du ≤ S′(φ↑(z))eM(z−φ↑(z)),

so that:

S(z)− S(φ↑(z)) ≤ (z − φ↑(z))S′(z) (6.7)

≤ (z − φ↑(z))S′(φ↑(z))eM(z−φ↑(z)),

and therefore: 0 ≤ S(z)−S(φ↑(z))
S′(φ↑(z))

≤ (z − φ↑(z))eM(z−φ↑(z)) = ◦(1).
Since v is continuous and g ≥ 0, by (6.6) we see that v is bounded from below and

v(z, z)− g(φ↑(z), z)→ 0.

Finally, we show that g(z, z)− g(φ↑(z), z)→ 0. Indeed we compute:

g(z, z)− g(φ↑(z), z) = −
(z − φ↑(z))2

2
+
(
S(z)− S(φ↑(z))

)∫ ∞
z

u− z
S(u)

du

− S(φ↑(z))
∫ ∞
z

z − φ↑(z)
S(u)

du.

Using Proposition 4.1-(ii) and (6.7), we get:(
S(z)− S(φ↑(z))

)∫ ∞
z

u− z
S(u)

du ∼
S(z)− S(φ↑(z))

α(z)S′(z)

≤
z − φ↑(z)
α(z)

= ◦(1).

Using again Proposition 4.1, we also get:

S(φ↑(z))
∫ ∞
z

z − φ↑(z)
S(u)

du ∼ (z − φ↑(z))
S′(φ↑(z))

α(φ↑(z))S′(z)
= ◦(1),

and as a consequence:
g(z, z)− g(φ↑(z), z) = ◦(1).

Therefore we finally have limz→∞ v(z, z)− g(z, z) = 0. 2

The final property of v required by the verification Theorem 3.1 is the following.
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Proposition 6.2 Let the coefficient α satisfy Conditions (2.2) and (4.1). Then v ≤ g on
∆ and v < g on the continuation region {(x, z) ∈∆; x > 0 and z < γ(x)}.

Proof.
On A1:
For z̄ ≤ z < Γ0 and 0 ≤ x < φ↓(z), we have:

v(x, z)− g(x, z) =
z2

2
+ gx(φ↓(z), z)

S(x)
S′(φ↓(z))

− g(x, z),

vx(x, z)− gx(x, z) = gx(φ↓(z), z)
S′(x)

S′(φ↓(z))
− gx(x, z)

= S′(x)
∫ φ↓(z)

x

Lg(u, z)
S′(u)

du,

where we used (5.14) for the last equality.
For z̄ ≤ z < Γ0, (0, z) ∈ Γ− while (φ↓(z), z) ∈ Γ+, so we can a priori have three behaviors

for v(., z)− g(., z):
- it is increasing on [0, φ↓(z)],
- or it is decreasing on [0, φ↓(z)],
- or it is decreasing on [0, δ) and increasing on (δ, φ↓(z)], for a certain δ ∈ (0, φ↓(z)).

Since v(0, z) = g(0, z) and v(φ↓(z), z) = g(φ↓(z), z), only the last behavior can occur and
v ≤ g on A1. Moreover v < g, except if x = 0 or x = φ↓(z).

On A2:
For x > φ↑(z) and z̄ ≤ z < Γ∞, we compute:

v(x, z)− g(x, z) = g(φ↑(z), z) + gx(φ↑(z), z)
S(x)− S(φ↑(z))

S′(φ↑(z))
− g(x, z).

So, similarly:

vx(x, z)− gx(x, z) = −S′(x)
∫ x

φ↑(z)

Lg(u, z)
S′(u)

du

Here again only three behaviors are a priori possible, for (v−g)(., z): increasing on [φ↑(z), z],
decreasing on [φ↑(z), z] or decreasing on [φ↑(z), δ) and increasing on (ζ, z] for a certain
δ ∈ (φ↓(z), z). As v(φ↑(z), z) = g(φ↑(z), z), we need only to consider v(z, z)− g(z, z).

We write n(z) = v(z, z)− g(z, z). Since vz(z, z) = gz(z, z) = 0:

∂

∂z
(v(z, z)− g(z, z)) = n′(z) = vx(z, z)− gx(z, z)

= −S′(z)
∫ z

φ↑(z)

Lg(u, z)
S′(u)

du.

We find the same expression as before, with x = z. If n′(z) < 0, we have
∫ z
φ↑(z)

Lg(u,z)
S′(u) du > 0

which implies that for any x ∈ (φ↑(z), z],
∫ x
φ↑(z)

Lg(u,z)
S′(u) du > 0. Therefore (v − g)(., z) is

decreasing on [φ↑(z), z], and as (v − g)(φ↑(z), z) = 0, we get n(z) < 0 if φ↑(z) < z.
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Assume that there exists z ∈ [z̄,Γ∞) such that n(z) ≥ 0 and φ↑(z) < z. Then, from the
previous argument, n′(z) ≥ 0. Since n is continuous this implies that n is nondecreasing on
any connected subset of {z′ ≥ z, γ(z′) > z′}. Let a := inf{z′ > z; γ(z′) = z′}. a < ∞ is
impossible since v(a, a) = g(a, a), and if a =∞, Proposition 6.1 gives limz→∞ n(z) = 0, so
again this is impossible. Finally, n(z) < 0 if φ↑(z) < z. Therefore v ≤ g on A2 and v < g

except if x = φ↑(z).

On A3:
Recall the definition of K given by (6.1). For x ≤ z < z̄, we have:

v(x, z)− g(x, z) =
z2

2
−KS(x) +

(z − x)2

2
+ xS(x)

∫ +∞

z

du

S(u)
,

so vz(x, z)− gz(x, z) = x(1− S(x)
S(z)

).

The latter expression is non-negative and positive if x 6= 0. Since v and g are continuous,
the result for A1 and A2 tells us that v(., z̄) ≤ g(., z̄), so that v ≤ g on A3 and v < g if
x 6= 0. 2

In the next section, we will provide a few examples.

7 Examples

7.1 Brownian motion

In this case, α(x) = 0 and S(x) = x. As (2.14) will never be satisfied for a non-decreasing
and convex function `, proposition (2.1) tells us that V and g will be infinite if ` satisfies
(2.16). But moreover we have the following result.

Proposition 7.1 For any 0 < x ≤ z and any convex and nondecreasing function `, we
have:
(i) Ex,zT0 = +∞,
(ii) Ex,zZT0 = Ex,z(ZT0)2 = +∞,
(iii) V and g are infinite everywhere except for x = 0.

Proof. (i) This is a very well-known result, but we give a proof for completeness reasons.
By direct calculation:

Px[T0 ≥ t] = Px
[

inf
[0,t]

Xu > 0
]

= P0[X∗t > x] = 2P0[Xt > x].

So that Ex,zT0 =
∫∞

0
xte
− x2

2tσ2 dt
√

2πt
3
2 σ

= +∞ as 2e
− x2

2tσ2
√

2πtσ
∼
√

2
πtσ2 when t→ +∞.

(ii) It is sufficient to prove that Ex,zZT0 =∞. By direct calculation, using (2.11) provides:

Ex,zZT0 =
(

1− S(x)
S(z)

)
z +

∫ ∞
z

y
S(x)S′(y)
S2(y)

dy

= (z − x) +
∫ ∞
z

x

y
dy = +∞.
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(iii) Since ` is non-decreasing and convex, there exist C > 0 and D ∈ R, such that
`(x) ≥ Cx + D. Therefore (ii) implies that g is infinite everywhere except for x = 0.
Now as in the proof of Proposition 2.1, this implies that V is infinite everywhere (except if
x = 0). 2

7.2 Brownian motion with negative drift

Now we consider the following diffusion, for constant µ < 0 and σ > 0:

dXt = µdt+ σdWt.

Therefore α(x) = −2µ
σ2 = α > 0, S(x) = eαx−1

α , and S′(x) = eαx.
We have an interesting homogeneity result for this process, as long as ` is a power function,

which allows us to assume that α = 1. In the following statement, we denote by γα the
corresponding boundary.

Proposition 7.2 Let α > 0 and p > 1 be given, and consider the following loss function
`(x) = xp. Then:

γα(z) =
γ1(αz)
α

.

Proof. Let X be a drifted Brownian motion with parameter αX = α, and define X̄ = αX.
The dynamics of X̄ is

dX̄t = αdXt = αµdt+ ασdWt.

So that αX̄ = −2µα
σ2α2 = 1. Let Z̄ be the corresponding running maximum, started from

αz. Then Z̄ = αZ, T0(X) = T0(X̄) = T0 and for any θ:

Ekx,kz(Z̄T0 − X̄θ)p = αpEx,z(ZT0 −Xθ)p.

This equality implies that if τ is optimal for one problem, it is also optimal for the other
one. Together with the minimality of θ∗, it means that:

Zt = γα(Xt)⇔ Z̄t = γ1(X̄t)⇔ αZt = γ1(kXt),

which completes the proof. 2

In the quadratic case `(x) = x2

2 , we have Lg(x, z) = 1 +α(z− x) + (1 + eαx) ln(1− e−αz).
We can see that ∂

∂xLg < 0, so that Γ is increasing (ie ζ = 0). Moreover, for any x > 0,
ln(1− x) < −x, so that for z > 0, Lg(z, z) < −e−αz < 0, so that Γ∞ = +∞.

Figure 4 below is a numerical computation of γ for `(x) = x2

2 . As Γ is increasing, γ
is necessarily increasing too (γ↓ is degenerate). Even though it does not affect the shape
because of Proposition 7.2, this plot was computed for α = 1.
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Figure 4: γ for a Brownian motion with negative drift and `(x) = x2

2

7.3 The CIR-Feller process

Let b ≥ 0, µ < 0 and σ > 0, then the dynamics of X is:

dXt = µXtdt+ σ
√
b+XtdWt.

Here, α(x) = α x
x+b with α > 0. In the degenerate case b = 0, we are reduced to the

context of the Brownian motion with negative drift. We then focus on the case b > 0 with
a quadratic loss function `(x) = x2

2 . Proceeding as in the proof of Proposition 4.3, we can
see that Γ∞ <∞, unlike in the case b = 0.

Moreover, as x → 0, α(x) ∼ αx
b , α′(x) ∼ α

b , so that we can see that for any z > 0,
∂
∂xLg > 0 for x small enough, which means that Γ↓ is not degenerate, or equivalently that
ζ > 0.

7.4 Ornstein-Uhlenbeck process

The dynamics of X is now given by:

dXt = µXtdt+ σdWt,

so that α(x) = αx, S′(x) = eα
x2

2 .

This case and the Brownian motion with negative drift case can be seen as the extreme
cases of our framework. Indeed here α(x) = αx is the ”most increasing” concave function,
while α(x) = α is the ”least non-decreasing” function.
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As for the Brownian motion with negative drift, we have an homogeneity result for this
process, as long as ` is a power function, which allows us to assume that α(x) = x.

Proposition 7.3 Let α(x) = αx with α > 0 and `(x) = xp with p > 1. Then the corre-
sponding boundary γα satisfies:

γα(z) =
γ1(z
√
α)√

α

Proof. We follow the proof in the case of a Brownian motion with negative drift. Let X
be process with αX(x) = αx. Then the process X̄ =

√
αX is such that αX̄ = 1. Denote

by Z̄ the corresponding running maximum process. Then Z̄ =
√
αZ, T0(X) = T0(X̄) = T0

and for any θ:

E√αx,√αz(Z̄T0 − X̄θ)p = α
p
2 Ex,z(ZT0 −Xθ)p

Then by the minimality of θ∗ we have:

Xt = γα(Zt)⇔ X̄t = γ1(Z̄t)⇔
√
αXt = γ1(kZt),

which provides the required result. 2

Then, focusing on the case `(x) = x2

2 , we show that Γ is decreasing in a neighborhood of
0, so that ζ > 0 and that Γ∞ < +∞.

Proposition 7.4 For an Ornstein-Uhlenbeck process:
• Lg(x,Γ0) > 0 for x > 0 in a neighborhood of 0, therefore Γ↓ is not degenerate,
• Lg(z, z) > 0 in a neighborhood of +∞, therefore Γ∞ < +∞.

Proof. Since α(x)→∞ as x→∞, Proposition 4.3 implies that Γ∞ <∞.
If x is small, we have the S(x) ∼ x, S′(x) = 1+S′′(0)x+◦(x) = 1+◦(x) and by definition

of Γ0,
∫∞

Γ0
du
S(u) = 1

2 . Therefore, as x→ 0, we can write:

Lg(x,Γ0) = 1 + αxΓ0 − 1 + ◦(x).

Since α > 0 and Γ0 > 0 by Proposition 4.2, Lg(x,Γ0) > 0 for x > 0 and sufficiently small.
2

Finally, Figure 5 below is a numerical computation of the boundary γ for `(x) = x2

2 . While
we do not prove it, we can see that γ is in this case decreasing first and then increasing.
Although it does not affect the shape because of Proposition 7.3, it was computed for α = 1.

8 Extension to general loss functions

Except for sections 2 and 3, the previous analysis only considered the case of the quadratic
loss function `(x) = x2

2 . In fact, as the reader has probably noticed, the quadratic loss
function plays a special role here, since we then have `(3)(x) = 0, which simplifies a lot the
study of the set Γ+, as well as the asymptotic behavior of Lg. Some crucial properties that
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Figure 5: γ for an OU process with `(x) = x2

2

we estabished in the quadratic case seem very hard to derive in the general case stated in
the sections 2 and 3.

Nevertheless, under additional assumptions, our results still hold true in a more general
framework. We explain here how to do so.

Let us compute:

Lg(x, z) =`′′(z − x) + α(x)`′(z − x)− (2S′(x)− α(x)S(x))
∫ ∞
z

`′′(u− x)
S(u)

du

+ S(x)
∫ ∞
z

`(3)(u− x)
S(u)

du

Since `′′(x) > 0 for x > 0 and `(3) ≥ 0, for any x ≥ 0, z 7→ ∂
∂zLg(x, z) is increasing.

Moreover, we have `′(x) → ∞ as x → ∞, so that for any x ≥ 0, lim
z→∞

Lg(x, z) > 0. As a

consequence, Γ+ 6= ∅, the definition of Γ in (4.3) can be extended.
The main problem is that Lg is no longer concave with respect to x, and it is not clear

how to show that Γ is U -shaped. In fact Proposition 4.2 (i) and Proposition 4.3 are crucial
but we are unable to prove them in general. Therefore we make the following additional
assumptions:

∃ζ ≥ 0, such that Γ is decreasing on [0, ζ] and increasing on [ζ,+∞) (8.1)

if lim
x→∞

α(x) =∞, then Γ∞ <∞. (8.2)
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Γ0 < Γ∞ from Proposition 4.2-(iii) is not true in general, but this is not important. It
just means that we have a new possibility for the shape of γ: γ↑(x) = x for every x ≥ x̄, as
we will explain later.

Then ODE (5.1) is replaced by:

γ′ =
Lg(x, γ)

`′′(γ − x)
(

1− S(x)
S(γ)

) . (8.3)

Since `′′ > 0, the Cauchy problem is well defined for any x0 > 0 and γ(x0) > x0, and the
maximal solution is defined as long as γ(x) > x.

In order to prove Proposition 5.1, we need asymptotic results as in Proposition 4.1:
If ` is not the quadratic loss function, we will make the following assumptions:

` is C3, `′ > 0, `′′ > 0, `(3) ≥ 0 and `, `′, `′′ satisfy (2.14) (8.4)

K1 := sup
y≥0

`(3)(y)
`′′(y)

<∞ and lim
x→∞

α(x) > K1 (8.5)

K2 := sup
y≥0

`′′(y)
`′(y)

<∞ and lim
x→∞

α(x) > K2. (8.6)

Notice that those assumptions are satisfied for exponential loss functions `(x) = λex with
λ > 0 or for power loss functions of the form λ(x+ ε)p with ε > 0 and p ≥ 2.

Proposition 8.1 Assume (8.4)-(8.6). Let ϕ be a measurable function such that 0 ≤ ϕ(z) ≤
z for all z (large enough). Then we have the following asymptotic behaviors, as z →∞:
(i) there exists a bounded function δ (depending on ϕ) satisfying δ(z) ≥ 1, for z large
enough, and such that: ∫ ∞

z

`′′(u− ϕ(z))
S(u)

du ∼ δ(z)`
′′(z − ϕ(z))
S′(z)

;

(ii) there exists a bounded function ν satisfying ν(z) ≥ 1, for z large enough, and such that:∫ ∞
z

`′(u− ϕ(z))
S(u)

du ∼ ν(z)
`′(z − ϕ(z))

S′(z)
.

Moreover if lim
x→∞

α(x) = ∞, then for any function ϕ, δ and ν are constant and equal to
1.

Proof. The proof is given in appendix. 2

If ε > 0, from Proposition 8.1 (i), there is a bounded function δ such that, as x→∞, we
get:

Lg(x, (1 + ε)x) ≥ `′′(εx)
[
1− δ((1 + ε)x)

S′(x)
S′((1 + ε)x)

]
+ α(x)`′(εx) + ◦(1).
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Now S′(x)
S′((1+ε)x) → 0 as x → ∞, while α(x)`′(εx) → ∞, so that Lg(x, (1 + ε)x) ≥ 1 + 3ε

for x large enough, and the proof of Lemma 5.1-(iii) can be achieved as in the quadratic case.

The other statements of Lemma 5.1 as well as Lemma 5.2 can be proved using the same
arguments as in the quadratic case. Finally we make a last assumption:

either α(x)→∞ as x→∞, (8.7)

or in Proposition 8.1 (ii), for any a > 0, and ϕ(z) = z − a, δ ≡ 1. (8.8)

Thanks to this, the proof of Proposition 5.1 is still valid. Indeed for a > 0, we compute:

Lg(x, x+ a) =`′′(a) + α(x)`′(a)− S′(x)
∫ ∞
x+a

`′′(u− x)
S(u)

du

+ S(x)
∫ ∞
x+a

`(3)(u− x)
S(u)

du+ ◦(1)

≥ `′′(a) + α(x)`′(a)− η`′′(a)
S′(x)

S′(x− a)
+ ◦(1).

If α(x) → ∞ as x → ∞, then the previous expression explodes to infinity as well. If
α→M with M > 0, then our assumption guarantees that η = 1, so that:

Lg(x, x+ a)

`′′(a)
(

1− S(x)
S(x+a)

) =
`′′(a)(1− e−aM ) +M`′(a)

`′′(a)(1− e−aM )
+ ◦(1)

= 1 +
M`′(a)

`′′(a)(1− e−aM )
+ ◦(1).

Since M`′(a)
`′′(a)(1−e−aM )

> 0, as in the proof of Proposition 5.1, we have in both cases α bounded
or not, for ε > 0 small enough, we have as x→∞:

Lg(x, x+ a)

`′′(a)
(

1− S(x)
S(x+a)

) > 1 + ε.

And then we can conclude as in the proof of the proposition.

Although we do not need it, this also implies Proposition 4.2 (ii).

Then we examine the decreasing part of γ. Equation (5.13) is replaced by:

g(x(z), z)− gx(x(z), z)
S(x(z))
S′(x(z))

− `(z) = 0. (8.9)

Now in the proof of Proposition 5.2, the new ODE for the Cauchy problem is:

γ′(x) =
Lg(x, γ)S(x)

(`′(γ − x)− `′(γ))S′(x) + `′′(γ − x)S(x)
(

1− S(x)
S(γ)

) ,
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and for any x and γ, there exists y ∈ (γ − x, γ) such that:

(`′(γ − x)− `′(γ))S′(x) + `′′(γ − x)S(x)
(

1− S(x)
S(γ)

)
= −x`′′(y)S′(x) + `′′(γ − x)S(x)

(
1− S(x)

S(γ)

)
≤ −x`′′(y) + `′′(γ − x)S(x)

≤ `′′(γ − x)(S(x)− xS′(x)).

The last inequality follows from the fact that `(3) ≥ 0. Since `′′(x) > 0 for x > 0, we can
proceed as in the proof of Proposition 5.2. And finally Proposition 5.3 is replaced by the
following:

Proposition 8.2 We have one of the following cases:
- γ↑ is increasing on [0,+∞), and this implies Γ0 < Γ∞;
- γ↓(x∗) = x∗ and x∗ ≥ Γ∞, which implies Γ0 > Γ∞;
- |graph(γ↓) ∩ graph(γ↑)| = 1.
In the first case we write x̄ = 0 and z̄ = γ↑(0). In the second case we write x̄ = z̄ = x∗.
In the third case, we write (x̄, z̄) = graph(γ↓) ∩ graph(γ↑). In all three cases we have
(x̄, z̄) ∈ Γ+ and {(x, γ↑(x)); x > x̄ and γ↑(x) > x} ⊂ Int(Γ+).

Remark 8.1 In the second case of the previous proposition, the condition x∗ ≥ Γ∞ is not
a priori a consequence of γ↓(x∗) = x∗, as there is no reason in general for the set Int(Γ−)
to be connected.

Finally, Theorem 6.1 can be proved in the same way in general, using the asymptotic
expansions of Proposition 8.1.

We define v by:

v(x, z) = `(z) + gx(φ↓(z), z)
S(x)

S′(φ↓(z))
if (x, z) ∈ A1 (8.10)

v(x, z) = g(φ↑(z), z) + gx(φ↑(z), z)
S(x)− S(φ↑(z))

S′(φ↑(z))
if (x, z) ∈ A2 (8.11)

v(x, z) = `(z) + S(x)[
∫ ∞
z

`′(u)
S(u)

du−K] if (x, z) ∈ A3 (8.12)

v(x, z) = g(x, z) if (x, z) ∈ A4, (8.13)

where K =
∫∞
z̄

`′(u)
S(u)du−

gx(x̄,z̄)
S′(x̄) .

The proof of Lemmas 6.1 and 6.2 still work in this case, with the new definition of v,
and the new equations for γ. In the proof of Proposition 6.1, we can use the asymptotic
expansions of Proposition 8.1 in order to get gx(φ↑(z), z) = O(1), v(z, z)−g(φ↑(z), z) = ◦(1)
and g(z, z) − g(φ↑(z), z) = ◦(1), and the result follows. Finally, the proof of Proposition
6.2 still holds.

Appendix 1: Proof of Proposition 4.1

Proof. Recall that
(

1
α

)′ → 0 at infinity as stated in Remark 2.1-(ii). All the limits and
equivalents are when z → +∞.
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(i): As S(z)→ +∞, S(z) =
∫ z

0 e
R u
0 α(v)dv ∼

∫ z
1 e

R u
0 α(v)dv. Integrating by parts, we get:∫ z

1
e

R u
0 α(v)dv =

[
e

R u
0 α(v)dv

α(u)

]z
1

−
∫ z

1

(
1
α

)′
(u)e

R u
0 α(v)dvdu.

Since
(

1
α

)′ → 0,
∫ z

1

(
1
α

)′ (u)e
R u
0 α(v)dvdu = ◦

(∫ z
1 e

R u
0 α(v)dv

)
, so that S(z) ∼ S′(z)

α(z) .

(ii): Using (i) and integrating by parts, we get:∫ ∞
z

du

S(u)
∼
∫ ∞
z

α(u)
S′(u)

du =
∫ ∞
z

α(u)e−
R u
0 α(v)dvdu =

1
S′(z)

;

∫ ∞
z

udu

S(u)
∼
∫ ∞
z

uα(u)
S′(u)

du =
z

S′(z)
+
∫ ∞
z

1
S′(u)

du.

But uα(u)→∞ as u→∞, so that∫ ∞
z

1
S′(u)

du = ◦
(∫ ∞

z

uα(u)
S′(u)

du

)
,

and therefore: ∫ ∞
z

udu

S(u)
∼ z

S′(z)
.

Finally, integrating by parts twice, we get:∫ ∞
z

u− z
S(u)

du ∼
∫ ∞
z

(u− z)α(u)
S′(u)

du =
∫ ∞
z

1
S′(u)

du

=
∫ ∞
z

α(u)
α(u)S′(u)

du =
1

α(z)S′(z)
+
∫ ∞
z

(
1
α

)′
(u)

1
S′(u)

du.

As
(

1
α

)′ (u)→ 0 as u→∞, we get the result. 2

Appendix 2: Proof of Proposition 8.1

Proof. (i): The proof is close to the proof of Proposition 4.1-(ii). First as ϕ is measurable
and satisfies 0 ≤ ϕ(z) ≤ z, the expressions make sense and the integrals exist. Then, using
Proposition 4.1-(i) and integrating by parts, we have:∫ ∞

z

`′′(u− ϕ(z))
S(u)

du ∼
∫ ∞
z

α(u)`′′(u− ϕ(z))
S′(u)

du =
∫ ∞
z

α(u)e−
R u
0 α(v)dv`′′(u− ϕ(z))du

=
`′′(z − ϕ(z))

S′(z)
+
∫ ∞
z

`(3)(u− ϕ(z))
S′(u)

du.

According to assumption (8.4), all the terms above are non-negative. Moreover, using (8.5)
we get: ∫ ∞

z

`(3)(u− ϕ(z))
S′(u)

du ≤ K1

∫ ∞
z

`′′(u− ϕ(z))
S′(u)

du

while
∫ ∞
z

α(u)`′′(u− ϕ(z))
S′(u)

du ≥ α(z)
∫ ∞
z

`′′(u− ϕ(z))
S′(u)

du (> 0),
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so that A := lim supz→∞

R∞
z

`(3)(u−ϕ(z))

S′(u)
duR∞

z
α(u)`′′(u−ϕ(z))

S′(u)
du
< 1, which means that, for z large enough, there

exists a certain k(z) ∈
[
0, 1+A

2

)
such that∫ ∞

z

`(3)(u− ϕ(z))
S′(u)

du = k(z)
∫ ∞
z

α(u)`′′(u− ϕ(z))
S′(u)

du+ ◦
(∫ ∞

z

α(u)`′′(u− ϕ(z))
S′(u)

du

)
.

As ϕ(z) < z if z > 0, `′′(z − ϕ(z)) > 0, and this implies that

(1− k(z))
∫ ∞
z

α(u)`′′(u− ϕ(z))
S′(u)

du ∼ `′′(z − ϕ(z))
S′(z)

.

Setting δ(z) = 1
1−k(z) ∈

[
1, 2

1−A

]
, we have the result. We also see that if α(x) → ∞ as

x→∞, then k(z) = 0, so δ(z) = 1.

(ii): Follows the lines of (i), replacing `′′ by `′, and using (8.6) instead of (8.5). 2

Appendix 3: application to a hedging strategy

We have applied this result with the following strategy. Assume that X is an Ornstein-
Uhlenbeck process with parameter α. We compute γ for `(x) = x2

2 . Assume at t = 0,
X0 > 0, then the first time t ∈ [0, T0] such that Xt ≥ γ(Zt), we sell 1 stock of X. At t = T0,
we close the position. Then we reinitialize everything and do the same with the minimum
(of course we buy instead of sell in this case).

We compare it to a family of strategies that we call ”fixed barriers”. We fix an a priori
barrier level b > 0, and if X > 0, we sell 1 stock the first time Xt ≥ b, then close the position
at t = T0, and do the symmetric if Xt ≤ −b. We have tested those strategies in two cases.
First a theoretical example, where we simulate the OU process X and use the ”right”
parameter α, then a market data example, where we took a process X computed from
market data, assumed it behaved as an OU process and tried to estimate the parameter.
More precisely in this second case, we took two stocks A and B, and computed:

X =
A
B

MA(AB )
− 1

where MA(Y ) is the moving average of Y (on a 3-month period).
We present hereafter the annualized Sharpe ratios obtained. What we call ”a posteriori

best barrier” is the best result we obtained with a fixed barrier b while b described R+, so
there is no way to know how to fix it. In fact, in every simulation that we made, this ”a
posteriori best barrier” b0 was close to Γ0, which is not very surprising as the plot of γ for
an OU process is quite flat. We emphasize on the fact that for a random barrier b, the
Sharpe ratio is most of the time very small and can even be 0.

Data Detection method Sharpe ratio
Theoretical data optimal stopping 2,1

a posteriori best barrier 2
Market data optimal stopping 1,8

a posteriori best barrier 1,6

35



References

[1] M. Dai, H. Jin, Y. Zhong and X. Zhou (2009). Buy low and sell high. Working paper.

[2] J. Du Toit and G. Peskir (2007). The trap of complacency in predicting the maximum.
Ann. Probab. 35, 340-365.

[3] J. Du Toit and G. Peskir (2008). Predicting the time of the ultimate maximum for
Brownian motion with drift. Proc. Math. Control Theory Finance (Lisbon 2007), 95-
112, Springer Berlin.

[4] J. Du Toit and G. Peskir (2009). Selling a stock at the ultimate maximum. Ann. Appl.
Probab. 19 (3), 983-1014.

[5] S.E. Graversen, G. Peskir and A.N. Shiryaev (2001). Stopping Brownian motion with-
out anticipation as close as possible to its ultimate maximum. Theory Probab. Appl.
45 (125-136).

[6] D. Hobson (2007). Optimal stopping of the maximum process: a converse to the results
of Peskir. Stochastics 79 (1), 85-102.

[7] S. Karlin and H.M. Taylor (1981). A Second Course in Stochastic Processes. Academic
Press.

[8] R. Myneni (1992). The pricing of American option. Ann. Appl. Probab. Vol. 2, No. 1
(1-23).

[9] J. Obloj (2007). The maximality principle revisited: on certain optimal stopping prob-
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