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Abstract

Privately informed owners securitizing assets signal positive information by retaining su¢ cient

interest. Signaling provides social bene�ts, allowing uninformed investors to insure without fear-

ing adverse selection. Instead of signaling, owners of high value assets may prefer a pooling

equilibrium in which they securitize more of the asset, relying on speculators to gather infor-

mation and bring prices closer to fundamentals. This induces suboptimal risk sharing, since

uninformed investors face adverse selection. We analyze privately optimal securitization and

the choice between signaling and reliance on speculative markets. In the model, prices are set

competitively, with an endogenously informed speculator trading against uninformed hedgers

placing rational orders. If a structuring exists providing su¢ cient speculator gains, her e¤ort is

high, mispricing is low, and all/most of the asset is securitized in a pooling equilibrium. Here

risky debt and levered equity are optimal, with optimal face value trading o¤ higher unit pro�ts

for the speculator against lower hedging demand. Hedgers imperfectly insure, buying only the

concave claim, the only source of speculator pro�ts. If risk-aversion is low and/or endowment

shocks are small, hedging demand is low, leading to low speculator e¤ort. Here high types sell

only safe debt in a separating equilibrium with perfect risk sharing. The owner�s incentive to

choose the separating equilibrium is weak when risk-aversion is high and/or endowment shocks

are large, precisely when e¢ cient risk sharing has high social value.

Advocates of securitization commonly argue structured products improve risk sharing. For

example, in his recent testimony before the U.S. Senate, Goldman Sachs investment banker Fabrice

Tourre stated: �To the average person, the utility of these products may not be obvious. But they

permit sophisticated institutions to customize the exposures they wish to take in order to better
�Gilles Chemla thanks la Chaire Finance et Developpement Durable for �nancial support.



manage the credit and market risks of their investment holdings.�The deeper intellectual argument

in support of this benign view of �nancial innovation is the First Welfare Theorem which states that

complete markets achieve Pareto optimal risk sharing (see e.g. Debreu (1959) and Arrow (1963)).

Policymakers have begun to question this positive view of securitization. For example, the

Chairman of the U.K. Financial Services Authority recently contended, �the argument that they

created great allocative e¢ ciency bene�ts via market completion was hugely overstated.� There

is also a deeper intellectual argument buttressing this negative view of �nancial innovation. Elul

(1995) and Cass and Citanna (1998) show that in a symmetric information economy, opening a new

security market can change relative prices of consumption goods, making all agents worse o¤. Dow

(1998) shows that even if there is a single consumption good, opening a new security market can

make all agents worse o¤ if there is asymmetric information between risk-averse uninformed agents

and informed speculators.

While generic examples of welfare destroying �nancial innovation are intriguing, they do not

allow one to take a completely informed view on the pros and cons of securitization, since they do

not analyze which type of asset-backed structures will actually be introduced in equilibrium. That

is, they do not comprehend the methods and motives for securitization. The purpose of this paper

is to develop a theory of privately optimal securitization in a setting permitting welfare analysis.

What are the private motives in the choice of securitization structures, and do they con�ict with

social objectives?

We consider the following setting. There are two periods and one consumption good. There

is a single real asset with veri�able cash �ows in the second period, so the only publicly traded

securities are those backed by this asset. Thus, the securitization structure chosen by the original

owner in�uences risk sharing. The owner has an intrinsic motive to raise funds in the �rst period,

being able to immediately convert each unit of numeraire received from investors into � > 1 units.

However, he retains the option to hold a claim to a portion of the securitized asset�s cash �ow.

There is asymmetric information, with the owner knowing the true asset value, which is high or low,
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while other agents do not. Prices are set competitively by risk-neutral market-makers in response

to market orders placed by rational risk-averse agents (hedgers below) and a risk-neutral speculator

who can exert costly e¤ort to increase the precision of the signal she receives regarding asset value.

The baseline model, which is of independent interest, considers the equilibrium securitization

structure under the assumption that the owner must sell the entire asset. For example, one may

think of this setting as approximating a distressed bank. The baseline model is nearly identical

to that of Boot and Thakor (1993) with one important exception: The trading of the uninformed

hedgers is endogenous. In addition to facilitating welfare analysis, which is impossible under pure

noise-trading, endogeneity of hedge trading leads to novel implications.

If the owner must sell the entire asset, no separating equilibrium exists, and the equilibrium

structure is that preferred by the owner of a high quality asset. Consequently, under full securiti-

zation the optimal structuring is that which maximizes the speculator�s incentive to put in e¤ort,

since this reduces expected underpricing for the high type. Three novel implications emerge from

endogenous trading by hedgers. First, hedger trading is con�ned to the most concave claim, e.g.

senior debt, with all informed speculator gains con�ned to that market. Second, two publicly traded

claims are always su¢ cient, since one may combine all but the most concave claim. Finally, the

optimal information sensitivity of the concave claim trades o¤ two competing concerns. On one

hand, an increase in the information sensitivity of the concave claim increases the per-unit pro�t of

the speculator, increasing her e¤ort. However, this induces an endogenous decline in hedge trading

volume, behind which the speculator hides. Under technical conditions, this tradeo¤ between in-

formation sensitivity and hedge trading volume yields an interior optimal face value for the senior

debt when the asset is fully securitized.

In the general model, we allow the owner to retain a claim to the asset�s future cash �ow. This

model is similar to that of Fulghieri and Lukin (2001) but di¤ers in three important dimensions.

First, they consider a setting with exogenous noise-trading, precluding analysis of risk sharing and

welfare. Second, in our extended model, any claim held by the original owner is optimally structured,
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whereas they assume the retained claim is ordinary equity. Finally, in our general model there exist

fully-revealing separating equilibria in addition to pooling equilibria.

When the owner is allowed to retain a claim to future cash �ow, as in the general model, the

equilibrium set always includes the least-cost separating equilibrium (LCSE) as viewed by the high

type. In the LCSE, the low type sells the entire asset in equity form. In contrast, the high type sells

only safe debt, retaining all risk on his own books in the form of a levered equity claim. Of course,

this LCSE entails a deadweight loss since the high type is not implementing the �rst-best scale of the

short-term production technology which has NPV of � � 1. The prediction that low types �nance

with equity and high types �nance with debt is standard in signaling models, as is the prediction that

high types pass up positive NPV investments (see e.g. Myers and Majluf (1984)). The attractive

feature of the LCSE from a social perspective is that it results in �rst-best risk sharing. This is

because full revelation of information allows hedgers to choose the optimal amount of insurance, no

longer being concerned with exposure to adverse selection. In a related paper, Gorton and Pennachi

(1990) �nd that riskless debt can be used to achieve e¢ cient risk sharing. However, we argue that

con�ning attention to riskless debt is overly restrictive in that any separating structure achieves

e¢ cient risk sharing.

In the general model, there also exist pooling equilibria provided they weakly Pareto-dominate

the LCSE from the perspective of both owner types. In pooling equilibria, only risky securities are

sold to outside investors, giving the speculator an incentive to acquire information. For example,

there may exist pooling equilibria in which the asset is fully securitized, with the optimal structuring

then being that de�ned above in the baseline model. The pooling equilibria involve social bene�ts

and costs. The bene�t of pooling equilibria relative to the LCSE is that the expected scale of �rst-

period investment is �rst-best. However, in pooling equilibria uninformed hedgers are exposed to

adverse selection. This causes them to change their trading decisions, resulting in ine¢ cient risk

sharing. Further, the speculator puts in costly e¤ort.

The model can be viewed as providing a novel perspective on security design, one in which
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owners choose between signaling or relying on speculators to generate information. Further, this

new perspective on security design highlights a fundamental con�ict between private and public

incentives in securitization, and in the degree of reliance on speculative activity. Pooling equilibria

exist if and only if the speculator can be incentivized to put in su¢ cient e¤ort under the e¤ort-

maximizing structuring. Intuitively, the high type prefers the pooling outcome to the LCSE when

he knows trading by the speculator will bring prices close to fundamental value. Intriguingly, factors

that make e¢ cient risk sharing more important from a social perspective increase the likelihood of

private owners implementing pooling equilibria cum speculation and ine¢ cient risk sharing. To see

this, note that hedge trader demand stimulates speculator e¤ort, since she hides behind their buy

orders. Thus, increases in the magnitude of the endowment shock hitting hedgers and/or increases

in their risk-aversion serve to increase speculator e¤ort. This increases the likelihood of the high type

�choosing�the pooling equilibrium. Formally, the LCSE payo¤s cease to be the unique equilibrium

payo¤s when endowment shocks are large and/or risk-aversion is high.

In addition to the papers cited above, our paper is closely related to that of Allen and Gale

(1988) who also evaluate optimal security design in a setting with endogenously incomplete markets,

with the �rm(s) having a monopoly on issuing securities due to the need for asset-backing. The

two models are predicated upon very di¤erent frictions, however. Allen and Gale assume there is

symmetric information, but �rms incur a cost when introducing a security. Hence, the tradeo¤s in

the models di¤er fundamentally.

DeMarzo and Du¢ e (1999) also analyze optimal security design from the perspective of an

issuer who places intrinsic value on immediate liquidity. However, they consider a very di¤erent

information structure. In their model, the issuer chooses the design of the security before observing

the asset�s true value. After the structure is locked-in, the issuer observes the true asset value

and decides how much of the security to sell. Under technical conditions, e.g. monotonicity, debt

is an optimal security since its low information-sensitivity results in low price impact per dollar

raised. In contrast, we consider a setting where the issuer knows the asset�s value when choosing
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the securitization structure. Further, we allow for a speculator to acquire information about asset

value, alleviating mispricing. Finally, the model of DeMarzo and Du¢ e is silent on risk sharing

since they assume universal risk-neutrality.

Nachman and Noe (1994) analyze a setting, like ours, where the issuer is privately informed at

the time the security is designed. In their setting, the scale of investment is �xed, and there is no

possibility for separation or informed speculation. Under technical conditions, e.g. monotonicity,

they show �rms will pool at a debt contract, since debt minimizes the cross-subsidy from high to

low types.

A number of security design papers build on the insight of Hirshleifer (1971) that informed spec-

ulation can reduce the e¢ ciency of risk sharing. Hennessy (2008) analyzes optimal security design in

a setting where the �rm is originally owned by a continuum of uninformed investors who rationally

trade the various claims on the �rm after being hit with a preference shock. For such owners, it can

be optimal to promote information acquisition to the extent that more informative prices allow the

�rm�s manager to make better real investment decisions. However, it may also be optimal to deter

information acquisition, since this allows uninformed owners to sell their claims without adverse

selection. Dang, Gorton and Holmström (2010) analyze optimal security design in a more general

setting than Hennessy (2008), but also rule out feedback e¤ects on real decisions. Consequently, the

optimal structure in their setting attempts to deter information acquisition to preserve e¢ cient risk

sharing. Both papers show debt is optimal for deterring information acquisition.

Price informativeness has been analyzed in other corporate �nance settings. Holmström and

Tirole (1993) present a model in which the equity �oat a¤ects information acquisition, price infor-

mativeness, and the risk premium paid to managers under optimal contracts. Aghion, Bolton and

Tirole (2004) and Faure-Grimaud and Gromb (2004) show that the price informativeness stemming

from speculative monitoring can promote e¤ort by insiders ex ante. In addition to the fact that all

three models are predicated upon managerial moral hazard, the other critical di¤erence with our

approach is that uninformed trading is exogenous.
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There is a voluminous literature on the nature of claims that will be introduced by securities

exchanges seeking to maximize trading volume and/or pro�ts earned on the bid-ask spread. These

models depart from our working assumption that the issuer of the security is privately informed

about the value of the underlying asset. Surveys of the entire �nancial innovation literature are

provided by Allen and Gale (1994) and Du¢ e and Rahi (1995).

The remainder of the paper is as follows. Section I describes the economic setting. Section II

abstracts from the security design problem in order to focus on the market-making process. Section

III analyzes optimal structuring in the baseline model where the entire asset must be securitized.

Section IV considers a generalization of the baseline model in which the original owner may retain

a claim on the underlying asset.

I. Economic Setting

This section describes preferences, endowments, and the market-making process.

A. Preferences and Endowments

There are two periods, 1 and 2, with a single nonstorable consumption good available in each

period. This consumption good is the numeraire. The asset type � is either high (H) or low (L), with

Owner being the only agent endowed with perfect knowledge of the type. The asset delivers � units

of the good in period 2 with perfect certainty, with L 2 (0;H): The uninformed prior probability of

the asset being high quality is q 2 (0; 1):

Owner possesses the only tangible real asset in the economy. Owner has no endowment other

than this real asset. The tangibility of the asset allows courts to verify its value in period 2.

In contrast, the endowments of the various agents are not veri�able by courts. Consequently,

other agents cannot issue securities and cannot short-sell. Further, there can be no endowment-

contingent contracts. Rather, courts can simply enforce real asset-backed payments contingent

upon the observed asset value in fL;Hg in the second period. Since endowments are not veri�able

by courts, Arrow securities are not possible and risk sharing may be ine¢ cient. Allen and Gale
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(1988) also consider an incomplete markets setting in which the �rm has the unique ability to issue

securities that can help to improve risk sharing.

There is a measure one continuum of small investors, labeled hedgers, who have may have an

insurance motive for purchasing securities delivering consumption in period 2. The hedgers are

su¢ ciently wealthy in the aggregate to buy the entire asset since each hedger has a �rst period

endowment of y1 � H: Hedgers face a common endowment shock, with their period 2 endowment

being either 0 or ��; with each realization equally likely.1 Prior to securities market trading in

period 1; hedgers privately observe a perfectly informative signal regarding the size of their period

2 endowment, allowing them to condition trading decisions on this information.

Hedgers are risk-neutral over �rst period consumption c1 and risk-averse over second period

consumption c2: They are indexed by the intensity of their risk-aversion as captured by a preference

parameter �. The utility of generic hedger-� takes the form:

U(c1; c2; �) � c1 +min(0; �c2): (1)

The preference parameters have compact support � � [1; �max]: Throughout, �max is assumed to

be su¢ ciently high such that there is always strictly positive hedging demand for some security.2

The � parameters have density f with cumulative density F: This distribution has no atoms, with

f being strictly positive and continuously di¤erentiable. As in Dow (1998), second period utility is

piecewise linear, and has a concave kink at zero consumption. Since hedgers are averse to negative

consumption in period 2, they have an intrinsic insurance motive for buying securities whenever

their period 2 endowment is negative.

There is a single speculator S who is risk-neutral and indi¤erent regarding the timing of con-

sumption having utility equal to c1 + c2. In the �rst period, she is endowed yS1 � H units of the

numeraire, so she can a¤ord to buy the entire asset. Her second period endowment is irrelevant and

normalized at zero.
1The commonality of shock size is inconsequential, serving only to simplify the expression for aggregate demand.

Alternative correlation structures yield similar results, with more cumbersome algebra.
2This avoids the need to continually check upper limits of integration when computing hedging demand.
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The speculator is unique in that she receives a noisy signal of asset type. She can exert costly

e¤ort to increase the precision of her signal. Letting s 2 fsL; sHg denote the signal and � the true

asset type, S chooses � � Pr(s = s� ) from the feasible set [1=2; 1]: Her non-pecuniary e¤ort cost

function e is strictly positive, strictly increasing, strictly convex, twice continuously di¤erentiable,

and satis�es

lim
�# 1

2

e(�) = 0

lim
�# 1

2

e0(�) = 0

lim
�"1

e0(�) = 1:

If S puts in any e¤ort, the signal becomes informative since

� >
1

2
) Pr[� = Hjs = sH ] =

Pr[� = H \ s = sH ]

Pr[s = sH ]
=

q�

q� + (1� q)(1� �) > q: (2)

The �nal set of agents in the economy is a measure one continuum of market-makers. They are

risk-neutral and indi¤erent regarding the timing of consumption having utility equal to c1 + c2. In

the �rst period each market-maker is endowed with yMM
1 � H units of the numeraire, so they too

can a¤ord to buy the entire asset. Their second period endowment is irrelevant and normalized at

zero.

B. The Market-Making Game

We characterize perfect Bayesian equilibria (PBE) of signaling games, requiring: all agents have

a belief at each information set; strategies must be sequentially rational given beliefs; and beliefs

are determined using Bayes� rule and the equilibrium strategies for all information sets on the

equilibrium path.

The market-making game is a signaling game played between the privately informed speculator

and market-makers. Aside from Owner, other agents enter the market-making game holding their

prior belief that the asset has high quality with probability q: The market-making game starts with

S choosing � at personal cost e(�). Her choice of � is not observable, but is correctly inferred by
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other agents in equilibrium. Then S privately observes the signal s. Next, the hedgers observe (the

perfect signal regarding) the size of their future endowment y2 2 f��; 0g. Finally, market-makers

set prices competitively. To do so, in the market-making game they form beliefs regarding the signal

received by S.

The market-making process is in the spirit of Kyle (1985) and Glosten and Milgrom (1985). The

speculator and hedgers simultaneously submit non-negative market orders. Market-makers then set

prices based upon observed aggregate demands in all markets. There is no market segmentation. At

this information set, market-makers must have a belief about the signal s for any aggregate demand

con�guration. Market-makers clear all markets, buying all securities not purchased by hedgers or

the speculator.

Since Owner is the only agent capable of issuing claims delivering goods in period 2, market-

makers cannot be called upon to take short positions. To this end, we impose the following technical

assumption.

A1 : � � L

2
:

The role of Assumption 1 is as follows. The aggregate demand of hedgers is weakly increasing in

�. Therefore, to avoid the possibility of aggregate demand exceeding supply for any security, the

endowment shock must be su¢ ciently small. Su¢ ciency of Assumption 1 for ensuring no shorting

by the market-makers is established below.

II. Market-Making with a Single Security

We set the stage for our subsequent analysis by initially ignoring the security design problem

altogether, focusing on how prices would be set by market-makers if the asset were simply sold in

its entirety.

Many of the results derived in this section are relevant for cases where the �rm bifurcates asset

claims into two securities. To handle bifurcation into two claims A and B, let (AL; AH) and (BL; BH)
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denote their respective period 2 payo¤s as a function of the veri�ed value in fL;Hg: Security B is

treated as the default in the case of only one security being issued. We have:

All Equity: (BL; BH) = (L;H):

Since she cannot short-sell, the optimal strategy for the speculator is to place a buy order if and

only if she receives a positive signal. She attempts hiding her buy orders behind those of hedgers

but cannot do so with probability one since she does not know hedgers�endowment shock. The

optimal size of her buy order is equal to the size of the aggregate buy order of hedgers when they

are hit with a negative endowment shock. This latter quantity is denoted X:

Each hedger conditions his demand on y2 and his idiosyncratic preference parameter �. A hedger

will not place a buy order if y2 = 0 since the marginal utility of any increase in c2 is then zero.

An individual hedger may place a buy order if y2 = �� since � > 1 implies there is a strong

insurance motive to avoiding negative consumption. However, each hedger is rational, weighing

adverse selection costs against insurance motives when choosing optimal demand.

Table 1 lists the possible aggregate demand con�gurations confronting market-makers.
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Table 1: Aggregate Demand Outcomes

Type Signal Endowment
Informed

Demand

Hedge

Demand

Aggregate

Demand
Probability

H sH �� X X 2X q�
2

H sH 0 X 0 X q�
2

H sL �� 0 X X q(1��)
2

H sL 0 0 0 0 q(1��)
2

L sL �� 0 X X (1�q)�
2

L sL 0 0 0 0 (1�q)�
2

L sH �� X X 2X (1�q)(1��)
2

L sH 0 X 0 X (1�q)(1��)
2

After observing aggregate demand, market-makers form beliefs regarding the signal received by

the speculator based upon the observed aggregate demand D, with:

Pr[s = sH jD = 2X] = 1 (3)

Pr[s = sH jD = X] = 1� q � � + 2q�

Pr[s = sH jD = 0] = 0:

Next note that beliefs over s can be mapped to beliefs over the asset type since:

Pr[� = HjD] = Pr[� = Hjs = sH ] Pr[s = sH jD] + Pr[� = Hjs = sL] Pr[s = sLjD] (4)

where

Pr[� = Hjs = sH ] =
q�

1� q � � + 2q� (5)

Pr[� = Hjs = sL] =
q(1� �)

q + � � 2q� :
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Substituting (5) into (4) one obtains:

Pr[� = HjD = 2X] =
q�

1� q � � + 2q� (6)

Pr[� = HjD = X] = q

Pr[� = HjD = 0] =
q(1� �)

q + � � 2q� :

It is readily veri�ed that beliefs regarding � increase monotonically in aggregate demand in the sense

that

Pr[� = HjD = 2X] > Pr[� = HjD = X] > Pr[� = HjD = 0]: (7)

The market-makers then set the price (P ) of equity as follows:

P (D) = L+ (H � L) Pr[� = HjD] 8D 2 f0; X; 2Xg (8)

) P (2X) > P (X) > P (0): (9)

To support the PBE conjectured in Table 1 it is su¢ cient to verify the speculator has no incentive

to deviate regardless of the signal she receives. To that end, o¤ the equilibrium path market-makers

form adverse beliefs from the perspective of the speculator, setting prices based upon:

Pr[s = sH jD] = 1 D =2 f0; X; 2Xg:

It is readily veri�ed that the speculator has no incentive to change her signal-contingent trading

strategy when confronted with such beliefs. While such beliefs o¤ the equilibrium path are su¢ cient

to support the conjectured PBE of the market-making game, it is worthwhile to brie�y discuss their

plausibility. Note that any D =2 f0; X; 2Xg must be due to the speculator placing a strictly positive

order. The chosen speci�cation of beliefs o¤ the equilibrium path is predicated on the intuitive

notion that market-makers should view any such (positive) order as being placed by S after having

observed sH . After all, if a negative signal is received, the speculator stands to incur a loss from

buying securities unless the market-makers form the most favorable beliefs from her perspective,

which would entail Pr[s = sH jD] = 0. Conversely, if a positive signal is received, the speculator

stands to make a strictly positive trading gain provided Pr[s = sH jD] < 1:
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A. Expected Revenue

The expected revenue of the owner, conditional upon his having positive information is:

E[Rj� = H] � RH(�) = L+(H�L)
�
�Pr[� = HjD = 2X]

2
+
(1� �) Pr[� = HjD = 0]

2
+
Pr[� = HjD = X]

2

�
:

(10)

Alternatively, one may rewrite (10) as follows:

RH(�) = L+ (H � L)Z(�) (11)

Z(�) � 1

2

�
q�2

1� q � � + 2q� +
q(1� �)2
q + � � 2q� + q

�
:

Anticipating, the variable Z plays an important role in the model. It measures the high type�s

expectation of the market-makers�updated probability of the asset having high value.

Intuition suggests RH and Z are increasing in the precision of the signal received by the spec-

ulator, as captured by �. For a high type, the more precise the signal, the more likely it is that

S observes sH and places a buy order. Since prices are increasing in aggregate demand, as shown

in equation (8), expected revenue also increases with signal precision. To verify this conjecture, we

compute

@RH
@�

=
H � L
2

[(Pr(� = Hj2X)� Pr(� = HjX)) + (Pr(� = HjX)� Pr(� = Hj0))] (12)

+
H � L
2

�
�
@ Pr(� = Hj2X)

@�
+
@ Pr(� = HjX)

@�
+ (1� �)@ Pr(� = Hj0)

@�

�
:

The �rst line of equation (12) captures the direct bene�t to a high type of an increase in signal

precision. To see this, suppose �rst that the hedgers experience a negative endowment shock, so

their aggregate demand is X: If S receives the correct signal, total aggregate demand observed by

the market-makers then increases from X to 2X: Alternatively, if the hedgers do not experience

a negative endowment shock, their aggregate demand is 0: If S receives the correct signal, total

aggregate demand observed by the market-makers then increases from 0 to X: The second line in

equation (12) accounts for the e¤ect of � on the belief revision process.
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Lemma 1 con�rms that the owner of a high value asset bene�ts from the speculator receiving a

more precise signal. Most proofs are relegated to the appendix.

Lemma 1 The expected revenue of the owner of a high value asset is increasing in the precision of

the signal received by the speculator.

From Lemma 1 it follows that Z is increasing in �, with

Z(1=2) = q (13)

Z(1) =
1 + q

2
:

B. Incentive Compatible Information Acquisition

Consider next the incentives of the speculator. From Table 1 one computes that her expected

gross trading gain is

G(�;X) = X �

264 � q�
2

�
[H � P (2X)] +

� q�
2

�
[H � P (X)]

+
�
(1�q)(1��)

2

�
[L� P (2X)] +

�
(1�q)(1��)

2

�
[L� P (X)]

375 (14)

=
q(1� q)(2� � 1)(BH �BL)X

2

It is readily veri�ed that the speculator�s trading gain increases linearly in each of its arguments,

and that the marginal bene�t of signal precision is increasing in X; with

G1(�;X) = q(1� q)(BH �BL)X > 0 (15)

G2(�;X) =
q(1� q)(2� � 1)(BH �BL)

2
> 0

G11(�;X) = G22(�;X) = 0

G12(�;X) = q(1� q)(BH �BL) > 0:

An incentive compatible signal precision, denoted �ic satis�es.

e0(�ic) = q(1� q)(BH �BL)X: (16)
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De�ne the inverse function of e0 as follows

 � [e0]�1:

We may rewrite the incentive compatible signal precision as

�ic =  [q(1� q)(BH �BL)X]: (17)

From the implicit function theorem and the convexity of the cost function e it follows that:

@�ic
@X

=
q(1� q)(BH �BL)

e00(�ic)
� 0 (18)

@�ic
@(BH �BL)

=
Xq(1� q)
e00(�ic)

> 0

@�ic
@q

=
X(BH �BL)(1� 2q)

e00(�ic)
:

Since the incentive compatible signal precision plays a critical role, we summarize these �ndings

in the following lemma.

Lemma 2 The incentive compatible signal precision of the speculator is increasing in the aggregate

demand of the hedge traders (X); increasing in the wedge between the value of claim B under high

and low types (BH �BL); increasing in q for q < 1=2; and decreasing in q for q > 1=2:

C. Hedging Demand

The next step is to determine aggregate hedging demand (X) for security B in response to a

negative endowment shock. Before conducting this analysis it is worth noting that if there were

symmetric information regarding the asset�s value, hedgers would fully insure. In particular, when-

ever they faced a negative endowment shock they would submit demand for �=� units of equity for

an asset of type � 2 fL;Hg: Such a demand would result in c2 = 0; avoiding losses associated with

negative consumption.

Letting x�(�) denote the optimal �-contingent demand, aggregate hedging demand is

X �
Z �max

1
x�(�)f(�)d�: (19)
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Since each hedger has measure zero, they act as price-takers. When hit with a negative endow-

ment shock, an individual hedger expects the security to be overpriced since a subset of hedgers

submits positive demands, pushing prices higher as market-makers revise upward their assessment

of the probability of the asset being of high value. Despite facing adverse selection, an individual

hedger is willing to submit a buy order if his hedging demand parameter � is su¢ ciently high.

In order to characterize hedging demand, it is useful to �rst compute the expected price of the

asset conditional upon a negative endowment shock.

E[P jy2 = ��] � P
�

(20)

P
�

= [q� + (1� q)(1� �)]P (2X) + [q(1� �) + �(1� q)]P (X)

= qH + (1� q)L+ q(1� q)(2� � 1)(H � L):

Equation (20) is consistent with the intuition that small investors face adverse selection when sub-

mitting buy orders, since the asset is overpriced relative to its unconditional expected value. Further,

adverse selection is increasing in the precision of the speculator�s signal. This latter �nding is at

the heart of the trade-o¤ in the model. Securitization structures that encourage information pro-

duction by the speculator simultaneously worsen adverse selection as perceived by small investors,

discouraging them from insuring against negative endowment shocks.

Recalling the functional form for hedger utility in equation (1), consider the change in expected

utility experienced by hedgers for various demand perturbations:

x 2
�
0;
�

H

�
=) @E(U jy2 = ��)

@x
= �[qH + (1� q)L]� P� (21)

x 2
�
�

H
;
�

L

�
=) @E(U jy2 = ��)

@x
= �(1� q)L� P�

x >
�

L
=) @E(U jy2 = ��)

@x
= �P�:

From the last line in (21) it is apparent that no individual hedger ever buys more than �=L units of

equity since this results in c2 > 0 with probability one and zero marginal utility. In order to further
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characterize optimal hedging demand, we de�ne two cuto¤ values for the preference parameter:

�1 � P
�

qH + (1� q)L (22)

�2 � P
�

(1� q)L:

From the demand perturbation equations (21) it follows that:

� 2 [1; �1]) x�(�) = 0 (23)

� 2 (�1; �2)) x�(�) =
�

H

� 2 [�2; �
max]) x�(�) =

�

L
:

Hedgers with relatively low risk-aversion, as proxied by �; go without any insurance, with perceived

adverse selection swamping their inherent hedging motive. Such investors have c2 = �� if there is

a negative endowment shock. Intermediate preferences lead to partial underinsurance, with c2 = 0

if � = H and c2 = ��(H � L)=H if � = L: Finally, investors with strong hedging preferences

overinsure with c2 = 0 if � = L and c2 = �(H � L)=L if � = H:

Lemma 3 summarizes.

Lemma 3 If both types adopt an all-equity �nancial structure, aggregate hedging demand in the

event of a negative endowment shock is

X = � �
�
F (�2)� F (�1)

H
+
1� F (�2)

L

�
(24)

�1 = 1 +
q(1� q)(H � L)(2� � 1)

qH + (1� q)L

�2 = 1 +
q(1� q)(H � L)(2� � 1) + qH

(1� q)L :

Finally, we may pull together the incentive compatible signal precision from Lemma 2 and the

hedging demand from Lemma 3 to verify existence of equilibrium. We have the following proposition.
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Proposition 1 In the market-making game, for any BH > BL, there exists a unique equilibrium

pair (�eq; Xeq) satisfying

�ic(X
eq) = �eq 2

�
1

2
; 1

�
X(�eq) = Xeq 2

�
0;

�

BL

�
:

III. Baseline Model: Optimal Structuring under Full Securitization

This section determines optimal security design in a baseline model predicated upon the as-

sumption that Owner must sell the entire asset. In this case, there is no possibility of a separating

equilibrium. This is because the owner of a low type asset would �nd it optimal to mimic the

structuring chosen by the owner of a high type asset, since any other structure would fully reveal

the negative private information, leaving him to collect the minimum expected revenue L: It follows

that in the baseline model one may con�ne attention to the securitization structure that gives the

high type the highest pooling payo¤.

This baseline model is useful for three reasons. First, it approximates a number of real-world

settings. For example, one may think of a distressed �rm or �nancial institution that has an

immediate need for cash. Alternatively, one may think of a conglomerate that has decided to spin

o¤ a division in order to focus on its core business. Finally, one may think of the baseline model

as approximating a structured �nance transaction where a bank has created a bankruptcy remote

special purpose vehicle which will issue asset backed securities. The second reason for performing

this baseline analysis is that it facilitates comparison with the �ndings of Boot and Thakor (1993)

since they consider a setting in which all cash �ow rights are sold to outside investors. Finally,

solving the baseline model is a necessary precursor to Section IV which allows the original owner to

endogenously retain some cash �ow rights.
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An important simplifying result is that in the absence of market segmentation, as assumed

throughout, attention can be con�ned to two publicly traded securities without loss of generality.

This result is stated as Lemma 4.

Lemma 4 When market-makers observe aggregate demands across all markets, any outcome at-

tainable with three or more publicly traded securities is attainable with two publicly traded securities.

Following Nachman and Noe (1994) and DeMarzo and Du¢ e (1999)), attention is con�ned

to securities with nonnegative payo¤s that are weakly increasing in the asset value in period 2.

Monotonicity is assumed for two reasons. First, monotone securities are commonplace. Second,

if one of the securities, say security A; was decreasing, the owner of security B could bene�t at

the expense of the owner of A by making a clandestine contribution of additional funds to the

asset pool. As argued by DeMarzo and Du¢ e (1999), only securities with monotone payo¤s will be

observed if such hidden contributions are feasible, and demanding monotonicity is then without loss

of generality.

The major di¤erence between the analysis of one and two securities is that hedgers insure

themselves in the most e¢ cient way possible. In particular, they buy the security that exposes

them to the lowest degree of adverse selection per unit payo¤. Therefore, we begin the analysis of

multiple securities with a focus on hedging demand.

A. Hedging Demand

Note �rst that hedgers have positive hedging demands only if they experience a negative endow-

ment shock. By the same reasoning applied in Section II, hedgers are concerned about overpricing of

securities in the event of a negative endowment shock since they correctly anticipate high aggregate

demand.

Before proceeding, we �rst argue that in the baseline model where the original owner must sell o¤

all cash �ow rights, it is never optimal to issue a safe claim. To demonstrate the argument, suppose

to the contrary Owner carves out a safe senior debt claim with BL = BH = L: Then all hedgers
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use security B; and only B, to fully insure in the event of a negative endowment shock, setting

their demand to xB = �=L. As argued by Gorton and Pennachi (1990) such a �nancial structure

achieves perfect risk sharing. However, in the present setting, the goal of the original (high type)

owner is to encourage information production since this increases his expected revenue (Lemma 1).

With safe debt available there will be no information production since there is no market in which

the speculator can make trading gains. We state this result as Lemma 5.

Lemma 5 If the owner were to issue a safe claim, hedging demand would be con�ned to that claim,

resulting in zero speculator e¤ort (�eq = 1=2). Market-makers would then revert to their prior

probability q of the asset being type H: If the owner must securitize the entire asset, he will never

issue a safe claim.

Lemma 5 highlights an inherent con�ict between private and public incentives in the choice of

securitization structures. In particular, the sale of a riskless claim would bring about perfect risk

sharing. However, the original owner may be willing to sacri�ce perfect risk sharing in order to

encourage information acquisition. Further, in the baseline model costly acquisition of information

is socially wasteful, serving no allocative role.

In light of Lemma 5, the remainder of this section focuses on securitizations in which both

claims are risky. To compute the optimal demand of an individual hedger it is useful compute his

conditional price expectation. To this end, let:

P
�
A � E[PAjy2 = ��]

P
�
B � E[PBjy2 = ��]:

Under this section�s working conjecture, to be veri�ed, that all hedging demand is concentrated

in a single security, say security B, there is zero aggregate demand for A since the speculator will

also refrain from trading in that market given the lack of any cover provided by hedgers. Therefore,

Table 1 continues to be the relevant table depicting aggregate demand (for security B). Since there

is no market segmentation, the aggregate demand for security B is also used by the market-makers
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in setting prices for security A: That is, the market-makers will set prices as a function of aggregate

demand for B as follows:

PA(D) = AL + (AH �AL) Pr[� = HjD] 8 D 2 f0; X; 2Xg (25)

PB(D) = BL + (BH �BL) Pr[� = HjD] 8 D 2 f0; X; 2Xg:

Recall, the only agent of positive measure is the speculator. Therefore, to support the perfect

Bayesian equilibrium conjectured in Table 1, it is su¢ cient to verify that the speculator has no

incentive to deviate. To that end, we assume the market-makers form adverse beliefs from the

perspective of the informed trader, setting prices based upon Pr[s = sH jD] = 1 for any D =2

f0; X; 2Xg in the market for security B and/or for any nonzero demand for security A: It is readily

veri�ed that the speculator then has no incentive to deviate from the conjectured signal-contingent

trading rule.

Using Table 1 we arrive at the following expressions for the expected prices computed by hedgers

when they experience a negative endowment shock:

P
�
A = [q� + (1� q)(1� �)]PA(2X) + [q(1� �) + �(1� q)]PA(X) (26)

= qAH + (1� q)AL + q(1� q)(2� � 1)(AH �AL)

and

P
�
B = [q� + (1� q)(1� �)]PB(2X) + [q(1� �) + �(1� q)]PB(X) (27)

= qBH + (1� q)BL + q(1� q)(2� � 1)(BH �BL):

Equations (26) and (27) are consistent with the intuition that hedgers perceive overpricing for any

security unless it is riskless. Further, the degree of perceived adverse selection is increasing in the

precision of the speculator�s signal.

Assume without loss of generality that security A is the convex security in the sense of taking a
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larger percentage claim in the event that � = H:

AH
H

� AL
L

(28)

) P
�
A

qAH + (1� q)AL
� P

�
B

qBH + (1� q)BL

) P
�
A

(1� q)AL
� P

�
B

(1� q)BL
:

The two inequalities that follow from the convexity of claim A imply that this security is viewed by

hedgers as having higher adverse selection costs per unit of c2 provided. The intuition behind optimal

hedging demand is simple. For hedgers with � su¢ ciently low, demand is zero for both securities,

with adverse selection dominating insurance motives. For hedgers with intermediate values of � the

agent partially insures, buying enough units of period 2 cash �ow such that his consumption is zero

if the actual asset type is H, which implies that consumption is negative if the actual asset type is

L: Finally, if � is su¢ ciently high, the hedger overinsures in the sense of purchasing enough units of

the security such that c2 reaches zero even if the actual asset type is L; which implies c2 > 0 if the

asset type is H: Of course, for any given level of insurance, hedgers seek the least costly security

combination.

In the event of a negative endowment shock, second period consumption can be expressed as a

function of the actual asset type

c2(xA; xB; �) = xAA� + xBB� � � 8 � 2 fL;Hg:

The optimal hedge portfolio is determined using perturbation arguments. Attention is con�ned

to portfolios satisfying c2(xA; xB; L) � 0: Otherwise, c2 > 0 regardless of the actual asset type,

despite the fact that marginal utility is then locally equal to zero. Letting � be an indicator for

c2(xA; xB;H) < 0, the expected utility of a hedger on the relevant interval is:

E[U jy2 = ��] = y1 � xAP
�
A � xBP

�
B � �q�[�� xAAH � xBBH ]� (1� q)�[�� xAAL � xBBL]:

Grouping relevant terms, the associated maximand can be rewritten as follows:

m(xA; xB) � xA[�(�qAH + (1� q)AL)� P
�
A] + xB[�(�qBH + (1� q)BL)� P

�
B]:
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Note that m is piece-wise linear, exhibiting a concave kink at points such that c2(xA; xB;H) = 0:

With this in mind, assume an initial portfolio consisting of zero units of either security, and then

consider a local perturbation. We then have:

@m(0; 0)

@xA
= � [qAH + (1� q)AL]� P

�
A (29)

@m(0; 0)

@xB
= � [qBH + (1� q)BL]� P

�
B:

If � is su¢ ciently low, both perturbations listed in (29) are negative and optimal hedging demand

is zero. Speci�cally:

� � P
�
B

qBH + (1� q)BL
� �B1 , (x�A; x

�
B) = (0; 0): (30)

Next, consider a portfolio (xA; xB) such that c2(xA; xB;H) = " where " is arbitrarily small. That

is, we are considering a point just right of the kink in the maximand. Performing a perturbation at

that point one �nds:

@m(xA; xB)

@xA
= �(1� q)AL � P

�
A (31)

@m(xA; xB)

@xB
= �(1� q)BL � P

�
B:

If � is su¢ ciently high, such a perturbation increases the maximand. Further, since the maximand

is piece-wise linear, it would then be optimal to fully insure against negative consumption, achieving

c2(x
�
A; x

�
B; L) = 0: Finally, from the inequality in (28) the minimal cost means of achieving this full

insurance is to purchase only security B: Formally, we have:

� � P
�
B

(1� q)BL
� �B2 , (x�A; x

�
B) =

�
0;

�

BL

�
: (32)

The �nal case to consider is � 2 (�B1 ; �B2 ): From the perturbation arguments given above, we

know such hedgers partially insure, with c2(x
�
A; x

�
B;H) = 0: Now, consider the marginal utility

(MU) per unit of period 1 numeraire allocated to the purchase of each security (on the relevant

region where the hedger is partially insuring). From the inequality in (28) we know:

MUB =
qBH + (1� q)BL

P
�
B

� qAH + (1� q)AL
P
�
A

=MUA: (33)
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It follows that security B yields the highest marginal utility on the region of partial insurance, so

that

� 2 (�B1 ; �B2 )) (x�A; x
�
B) =

�
0;

�

BH

�
: (34)

This establishes Proposition 2.

Proposition 2 (Baseline Model) There is zero hedging demand for the convex claim A: In the event

of negative endowment shock, aggregate hedging demand for security B is

X(�;BL; BH) = � �
�
F (�B2 )� F (�B1 )

BH
+
1� F (�B2 )

BL

�
(35)

�B1 = 1 +
q(1� q)(BH �BL)(2� � 1)

qBH + (1� q)BL

�B2 = 1 +
q(1� q)(BH �BL)(2� � 1) + qBH

(1� q)BL
:

Proposition 2 can be contrasted with a result obtained by Boot and Thakor (1993). In their

model, speculators make trading gains in the convex levered equity claim. This results from their

particular reduced-form speci�cation of noise trading. In our model, hedgers optimize their portfo-

lios and insure themselves using the least informationally sensitive claim�the concave claim. Con-

sequently, in our model the speculator is unable to make trading gains in the market for the convex

claim. Rather, she hides behind the hedgers in the market for the concave claim.

B. Optimal Structuring

In the baseline setting in which all cash �ow rights must be sold, the sole objective of the owner

of the high value asset is to maximize the incentive compatible level of signal precision �ic: To see

this, recall from Lemma 1 that the expected revenue of such an owner is increasing in �: Next, note

that the incentive compatible signal precision is de�ned implicitly by equation (16). From convexity
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of e¤ort cost the function e it follows that the optimal security design solves:

PROGRAM 1 (36)

(B�L; B
�
H) 2 arg max

BL;BH
(BH �BL)X(�;BL; BH) (37)

s:t:

(Concavity)
BL
L

� BH
H

(Monotonicity) BH � BL (38)

(Limited Liability) BL � L:

Intuitively, the optimal �nancial structure under full securitization maximizes the product of the

speculator�s per-unit pro�t and endogenous hedge trading volume. This creates a natural trade-

o¤ given that uninformed demand decreases with informational sensitivity. The constraint labeled

Concavity ensures that security B is the liquid security in which hedging demand is concentrated.

The three listed constraints ensure all other limited liability and monotonicity constraints are re-

spected since they imply:

A� (0; �) 2 [0; � ] 8 � 2 fL;Hg

BL > 0

BH 2 (0;H]

AH � HAL
L

:

Conveniently, Program 1 is independent of the choice of BL provided BL 2 (0; L]: This is because

hedging demand is homogeneous degree minus one in (BL; BH): For example, if Owner were to cut

both state contingent payo¤s in half, each hedger would simply double his hedging demand. Thus,

examining the objective function in Program 1, the optimal policy is unique up to a scalar, since

(BH �BL)X(�;BL; BH) = (�BH � �BL)X(�; �BL; �BH) 8 � 2 (0; 1]: (39)

Given this �nding, let

BH � �BL:
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In this case, the aggregate demand de�ned in Proposition 2 simpli�es as follows (with slight abuse

of notation):

X = X(�;BL; �) =
�

BL
�
�
1� F (�1(�))

�
� (�� 1)F (�2(�))

�

�
(40)

�1(�) � 1 +
q(1� q)(2� � 1)(�� 1)

1 + q(�� 1)

�2(�) � 1 +
q(1� q)(2� � 1)(�� 1) + q�

(1� q) :

Increases in � reduce hedging demand since both cuto¤s are increasing in � with:

�01(�) =
q(1� q)(2� � 1)
[1 + q(�� 1)]2 > 0 (41)

�02(�) = q(2� � 1) + q

(1� q) > 0:

Making the substitution BH = �BL throughout Program 1 also allows us to simplify the optimal

structuring problem as follows.

Lemma 6 Suppose total securitized cash �ow is worth l if the asset is low quality and h � l if the

asset is high quality. Total expected revenue received for the securitized claims, conditional upon the

asset being of high quality, is maximized with B�L 2 (0; l] and B�H = ��B�L where �
� solves

PROGRAM 2

�� 2 argmax
�

M(�) � �(�� 1)
�
1� F (�1(�))

�
� (�� 1)F (�2(�))

�

�
s:t:

� � h

l
:

Lemma 7 establishes a su¢ cient condition under which the objective function in Program 2 is

strictly concave.

Lemma 7 If the cumulative distribution function for the intensity of hedging preferences (F ) is

weakly convex, then the maximand in Program 2 (M) is strictly concave.
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The intuition behind Lemma 7 is as follows. If F is convex then marginal increases in � result

in ever larger reductions in aggregate hedging demand. Further, the bene�t to the speculator of the

increase in per-unit pro�ts stemming from an increase in � is spread over a progressively smaller

trading base. Consequently, the maximand is strictly concave. For the remainder of the paper it is

assumed that F is convex.

A2 : F is weakly convex.

The Lagrangian for Program 2 can be written as:

L(�)�M(�) + �
�
h

l
� �

�
: (42)

The optimal policy is characterized by a unique pair (��; ��) satisfying the following �rst-order

condition

M 0(��) = �� (43)

and the complementary slackness conditions:�
h

l
� ��

�
�� = 0 (44)

�� � 0:

For the remainder of the analysis, we shall assume that H=L is su¢ ciently high such that the

concavity constraint does not bind if the �rm fully securitizes. To this end, let ��� denote the

unconstrained maximizer of M :

��� � (M 0)�1(0):

We adopt the technical assumption:

A3 :
H

L
> ��� ) ��(L;H) = ���; ��(L;H) = 0:

One can think of Owner as progressively raising �, bringing the concave claim B closer and closer

to a linear claim. Doing so raises the per-unit pro�t of the speculator, but also diminishes demand

for B, with Assumption 2 implying the demand cost rises with �: Assumption 3 is predicated on the
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notion that the demand cost dominates before B becomes linear. That is, Assumption 3 ensures that

when Owner fully securitizes the underlying real asset, it is never optimal to package it as straight

equity. To see this at a technical level, suppose instead that the asset is fully securitized and that

the concavity constraint in Program 2 were actually binding at the optimum. Then BH=BL would

be equal to H=L and the owner of B holds a claim with information sensitivity equal to that of

ordinary equity.

Di¤erentiating the maximand yields:

M 0(�) = �

�
1� F (�1)

�
� (�� 1)F (�2)

�

�
(45)

��
�
�� 1
�

� �
F (�2)� F (�1)

�
+ f(�1)�

0
1(�) + (�� 1)f(�2)�02(�)

�
:

The �rst term in (45) captures the gain from increasing informational sensitivity (via �), as it

increases the speculator�s per-unit trading gain. The negative term captures the cost of increas-

ing informational sensitivity in terms of reducing equilibrium hedging demand, behind which the

speculator hopes to hide her trading. Canceling terms one obtains:

M 0(�) = �

�
1� F (�2)

�
1� 1

�2

�
� F (�1)

�2
�
�
�� 1
�

�
[f(�1)�

0
1(�) + (�� 1)f(�2)�02(�)]

�
: (46)

We have then established the following proposition which characterizes optimal security design

in the baseline model.

Proposition 3 (Baseline Model) The optimal structuring consists of a liquid concave claim with

B�L 2 (0; L] and B�H = ���B�L; where �
�� < H=L is the unique solution to

1� F (�1)

���
� (�

�� � 1)F (�2)
���

=

�
��� � 1
���

� �
F (�2)� F (�1)

���
+ f(�1)�

0
1(�

��) + (��� � 1)f(�2)�02(���)
�
:

(47)

The residual convex claim attracts zero aggregate hedging demand. All informed trading gains are

derived in the market for the concave claim.

The �rst-order condition pinning down the optimal informational sensitivity of the liquid claim,

as captured by ���; re�ects the following fundamental trade-o¤. Under full securitization, the owner
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of a high quality asset maximizes the incentive of the speculator to generate more precise signals.

This is accomplished by maximizing the product of per-unit pro�ts and hedge trading volume.

Marginal increases in informational sensitivity increase the speculator�s trading gain on a per-unit

basis, but also result in endogenous reductions in hedging demand as uninformed investors perceive

greater exposure to adverse selection. At an interior optimum, the marginal bene�ts and costs are

equated.

The following corollary shows that under full securitization optimal structuring can be achieved

by combining standard securities.

Corollary (Baseline Model) One optimal securitization structure consists of illiquid levered equity

and liquid risky senior debt with face value ���L: Another optimal securitization structure consists

of liquid equity and an illiquid call option on the whole asset with strike price ���L:

At this point it is worth recalling the working assumption that the only party capable of issuing

securities is Owner. That is, other economic agents cannot issue securities or short-sell. Now recall

that the market-markets clear markets for all securities, buying one minus the combined aggregate

demand of the hedgers and the speculator. But is it possible for aggregate demand to exceed supply?

To address this question, notice that the maximum aggregate demand coming from the hedgers and

speculator is 2X: We can write hedging demand as:

X(�;BL; �) =

�
�

BL

��
F (�2)� F (�1)

�
+ 1� F (�2)

�
:

Therefore, to avoid the possibility of market-makers being called upon to short-sell, � must be

su¢ ciently small in relation to BL: The no-shorting constraint is clearly easiest to satisfy if Owner

chooses BL = L; where the choice of BL was otherwise arbitrary when we ignored the no-shorting

constraint. From Assumption 1 it follows that the market-makers are never called upon to short-sell

(even at suboptimal �) since

� � L=2) 2X(�;B�L = L; �) < 1: (48)
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IV. General Model: Optimal Degree and Design of Securitization

The baseline model assumed Owner must sell the entire asset. Such a setting is relevant when

there is a forced asset sale due to antitrust enforcement, bankruptcy liquidation, or unbounded

liquidity needs. This section considers an alternative setting in which Owner chooses both the

degree and design for securitization of the original asset.

The assumptions for the remainder of the paper are as follows. Owner is risk-neutral and values

consumption equally in both periods, having utility of the form c1 + c2: Further, Owner has access

to a linear production technology allowing him to convert each unit of numeraire received from

investors in period 1 into � > 1 units of numeraire in that same period. In contrast to the original

real asset, the value of this short-term production technology is not veri�able by courts, so this

stream of cash �ow cannot be securitized.

We consider this particular setup for two reasons. First, it approximates a number of real-world

settings. For example, one may think of a distressed bank as placing high, yet bounded, value on

the immediate receipt of cash coming from securitization of an underlying asset. Second, this setup

allows us to retain our focus on the optimal securitization of a single real asset, here the original

real asset with values in fL;Hg: This allows us to address how the option to retain some cash �ow

rights a¤ects the optimal securitization structure.

If there were no intrinsic bene�t to receiving funds immediately (� = 1), the owner of the

high quality asset would not sell any claims on the real asset given asymmetric information. He

would then obtain his �rst-best payo¤H by holding onto the entire asset. Conversely, if there were

symmetric information and if � were greater than one, then an owner of either real asset type would

sell all cash �ow rights (full securitization). In the event of a negative endowment shock, the hedgers

would then fully insure themselves by purchasing �=� units of the equity written on the real asset,

ensuring they achieve c2 = 0 with probability one, as is the case under perfect risk sharing.

A. The Security Design Game
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Maskin and Tirole (1992) show the equilibrium set of signaling games can be narrowed and

Pareto-improved (from the perspective of the privately informed party) by expanding the set of

feasible initial actions. Tirole (2005) describes an application of the formulation of Maskin and

Tirole (1992) to security issuance by a privately informed party. We adapt the game of Tirole

(2005) to our setting.

We characterize PBE again requiring: all agents have a belief at each information set; strategies

must be sequentially rational given beliefs; and beliefs are determined using Bayes� rule and the

equilibrium strategies for all information sets on the equilibrium path.

The sequencing of events is as follows. The entire security design game actually consists of

two connected games: an o¤er game and the market-making game. The latter game was already

described in Section I. The o¤er game is a signaling game played between Owner and all outside

investors. This game begins with Owner privately observing asset value. He then approaches

the market-makers (e.g. investment banks) and publicly proposes a menu of two securitization

structures, say � 2 f�1;�2g, that he would like the option to choose from subsequently. This

step resembles a shelf-registration in that Owner is locking in a pair of optional future �nancial

con�gurations. Each structure stipulates all payo¤s for claimants as a function of the veri�ed asset

value in period 2. The market-makers then agree to clear markets competitively for whatever

structure � the owner subsequently chooses from his menu. All agents in the economy must have

a belief regarding the asset type in response to any menu o¤er, including those o¤ the equilibrium

path. Beliefs at this stage are labeled o¤er beliefs. To support candidate PBE, initial menu o¤ers

o¤ the equilibrium path are �punished�with outside investors inferring � = L with probability one.

The sole di¤erence between this formulation and the game described by Tirole (2005) is that in

our model market-makers cannot agree to providing cross-subsidies. Rather, they simply agree to

compete and clear markets for the securitization structure subsequently chosen by Owner. Using the

terminology of Tirole (2005), competitive market-making implies that all investors in securities �nd

them pro�table type-by-type. This stands in contrast to a setting in which investors can pre-commit
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to subsequently buying some set of securities at a loss, a possibility allowed in the formulation of

Tirole (2005).

In the next stage of the o¤er game, Owner selects a securitization structure � from the menu

he initially proposed, with the choice being incentive compatible. After observing the selection of

Owner, all other agents revise beliefs using Bayes�rule where possible. The beliefs formed at this

stage are labeled selection beliefs. It is worth stressing that both types can o¤er the same menu,

but they do not necessarily select the same securitization structure from the menu. In a separating

equilibrium of the o¤er game, the initial securitization proposal is such that the � selected from the

menu reveals the true asset type � : In any separating equilibrium securities are correctly priced and

all agents trade in full knowledge of the true type. There is no incentive for the speculator to put

in e¤ort in a separating equilibrium of the o¤er game.

In a pooling equilibrium of the o¤er game, both owner types propose the same trivial menu with

�1 = �2: In such cases, no information is revealed about the asset type after the selection stage of

the o¤er game. If and only if a pooling equilibrium is played in the o¤er game, play then passes

to the market-making game. Recall, all relevant players enter the market-making game continuing

to use their prior belief that Pr[� = H] = q; as is appropriate when the o¤er game reveals no

information regarding � : Then a signaling game ensues between the speculator and market-makers,

where market-makers use aggregate demand to form beliefs regarding the signal s and set prices

accordingly.

B. The Least-Cost Separating Equilibrium

In the general model, the owner can credibly signal positive private information by retaining

su¢ cient rights. To this end, assume Owner designs a third security C with value-contingent payo¤s

(CL; CH): Owner holds security C and sells the other two securities A and B to public investors

in a competitive market. From Lemma 4 it follows that con�ning attention to no more than two

publicly traded securities is without loss of generality.

We begin by evaluating the least-cost separating equilibrium (LCSE) from the perspective of
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the high type. Note that in the LCSE the speculator has no incentive to acquire information since

the original owner�s private information is fully revealed by his �nancing choice.

The LCSE minimizes the low type�s incentive to mimic by giving him his �rst-best allocation in

which he sells the entire asset in, say, equity form for L: The LCSE makes the high type as well o¤

as possible subject to the constraint that the low type would not choose to mimic. It solves:

max CH + �BH

s:t:

No Mimic : �L � CL + �BH

Limited Liability

Monotonicity:

Clearly, the optimal policy is to relax the no-mimic constraint to the maximum extent by setting

C�L = 0; implying B
�
L = L: Further, the no-mimic constraint must bind at the optimum , implying

B�H = L and C�H = H � L: This leads to the following proposition.

Proposition 4 In the least-cost separating equilibrium, a low type asset is sold in its entirety in

all-equity form. The owner of a high type asset sells only a safe senior debt claim with face value L;

retaining a levered equity claim. Hedgers then perfectly insure against negative endowment shocks

by purchasing correctly priced claims.

The intuition behind Proposition 4 is simple. In the LCSE, the low type would always mimic if

the high type were to sell any risky claim since he would then bene�t from security overvaluation.

Therefore, the best the high type can do is to get the maximum liquidity possible subject to zero

informational-sensitivity. Debt with face value L achieves this objective.

In the LCSE, the high type experiences a deadweight loss relative to full information equal to

(��1)(H�L): This deadweight loss re�ects that fact that �rst-best entails him selling o¤ the entire

asset instead of just the claim to L: As in the model of Myers and Majluf (1984), in the LCSE
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asymmetric information results in the high type cutting back the scale of his investment to below

�rst-best.

The socially attractive feature of the LCSE is that it entails perfect risk sharing, regardless of

the actual asset type. To see this, note that the equity of the low type and the debt of the high type

are both correctly priced since the equilibrium is fully-revealing. Therefore, the hedgers can and

will perfectly insure in the event of a negative endowment shock, having access to correctly priced

securities. That is, the hedgers achieve c2 = 0 with probability one giving up one unit of c1 per unit

of c2 purchased.

Although not pursued here, Proposition 4 shows the results in Gorton and Pennachi (1990) are

overly restrictive in that their model relies upon safe debt to achieve perfect risk sharing. However,

perfect risk sharing is achieved in any separating equilibrium, even if the separation is predicated

upon the issuance of risky claims.

C. The Equilibrium Set

This subsection maps some of the results of Maskin and Tirole (1992) and Tirole (2005) to our

setting, relying on somewhat di¤erent proofs due to di¤erences in the economic settings considered.

The next lemma places a lower bound on what each type must receive in any equilibrium.

Lemma 8 In any equilibrium of the security design game, each owner type must receive a payo¤

weakly greater than his least-cost separating payo¤.

Proof. Suppose to the contrary that some type received less than his LCSE payo¤. He could then

pro�tably deviate by issuing safe debt with face value L and retaining residual cash �ow rights.

The following lemma characterizes the equilibrium set.

Lemma 9 The equilibrium set of the security design game always includes the least-cost separating

equilibrium. It also includes a pooling equilibrium where there is a single contract on the o¤ered

menu provided that contract weakly Pareto dominates the least-cost separating equilibrium (from the

perspective of both owner types).

35



Proof. Consider �rst supporting the LCSE. If beliefs were set to Pr[� = H] = 0 in response to

any deviating menu, then no such deviation is pro�table. Suppose next there is a pooling contract

weakly Pareto dominating the LCSE. If beliefs were set to Pr[� = H] = 0 in response to any

deviating menu, the deviator would get weakly less than his LCSE payo¤ and the deviation is not

pro�table.

C. The Pooling Equilibrium

Consider next the nature of pooling equilibrium�an equilibrium in which both types o¤er a

trivial menu such that �1 = �2: The objective of the owner of a high type asset is to maximize

CH + E[PA + PBj� = H]: (49)

Any pair (CL; CH) held by the original owner leaves a residual stream of payments that will be

packaged and sold to outside investors:

(CL; CH)) (l; h) � (L� CL;H � CH):

We characterize the optimal nature and scope of securitization using a two step procedure. First,

Lemma 6 can be used to characterize the optimal structuring for the sale of residual cash �ows after

netting out Owner�s claim. Then (CL; CH) are chosen in light of their e¤ect on the value attainable

in this residual structuring problem.

Before proceeding with the formal solution, it is useful to sketch the intuition. For the owner

of a high quality asset, the bene�t of increasing CH is that he marginally reduces his exposure to

underpricing. However, this retention of cash �ow rights from the long-term tangible real asset

reduces the amount he can invest in the pro�table short-term project. Further, an increase in CH

reduces h=l: If h=l � ���; where ��� is de�ned in Proposition 3, the concavity constraint in Program

2 is binding and the incentive compatible signal precision falls below that attainable under full

securitization.

Let M�(l; h) denote the maximum value obtained in Program 2 given that the total value of
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publicly traded claims on the real asset is in fl; hg:

M�(l; h) �M [��(l; h)]: (50)

From (16) and the de�nition of M� it follows that the maximized incentive compatible signal pre-

cision is:

��(l; h) �  [q(1� q)M�(l; h)]: (51)

From the Envelope Theorem we know:

M�
1 (l; h) =

@L
@l
=
�h��(l; h)

l2
) ��1(l; h) =

�q(1� q)h��(l; h)
l2e0(��)

� 0 (52)

M�
2 (l; h) =

@L
@h

=
��(l; h)

l
) ��2(l; h) =

q(1� q)��(l; h)
le0(��)

� 0:

The inequalities in (52) convey an important trade-o¤. Speci�cally, when the concavity constraint is

binding, increases in l reduce the value obtained in Program 2 and with it the incentive compatible

signal precision ��. Conversely, increases in h loosen the concavity constraint, potentially leading

to higher ��: Thus, consistent with the intuition provided above, a high value of CH imposes a cost

in terms of the power of incentives that can be provided to the speculator. Lower incentives then

lead to more severe mispricing of the public claims.

With this in mind, we turn to the solution of the following restated program.

PROGRAM 3

max
l;h

�(l; h) � H � h+ �[l + (h� l)Z(��(l; h))]

s:t:

Incentive Compatability : ��(l; h) =  [q(1� q)M�(l; h)]

Monotonicity : h � l

Limited Liability : h 2 [0;H] and l 2 [0; L]:
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Program 3 is not necessarily concave. Therefore, instead of relying on �rst-order conditions, we

pin down the optimal policy via perturbation and dominance arguments.

Casual intuition suggests the optimal pooling contract for the owner of a high quality asset

entails C�L = 0 and l� = L: After all, the owner of a high quality asset has no desire to retain

any cash �ow rights should the observed asset value be equal to L; since he knows this is a zero

probability event. He also knows that the concomitant increase in l tends to boost his revenues,

since investors are paying for the rights to l. However, there is a countervailing cost to such a policy,

since increases in l tighten the concavity constraint, potentially reducing the incentive compatible

level of signal precision. Formally, we have:

�1(l; h) = �[1� Z(��(l; h)) + Z 0(��(l; h))��1(l; h)]: (53)

The following lemma shows that the liquidity e¤ect dominates in that the low payo¤ is always fully

securitized in the pooling equilibrium.

Lemma 10 The optimal pooling contract for the high type entails a zero payo¤ to the owner if asset

value is low (C�L = 0 and l
� = L):

Lemma 10 allows us to rewrite Program 3 as a one dimensional optimization:

PROGRAM 30

max
h

�(L; h) � H � h+ �[L+ (h� L)Z(��(L; h))]

s:t:

Incentive Compatability : ��(L; h) =  [q(1� q)M�(l; h)]

LL&Mono : h 2 [L;H]:

It is readily veri�ed that if the owner of the high quality asset opts to securitize only safe debt

he gets

�(L;L) = H � L+ �L: (54)
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Further,

�Z[��(L;H)] � 1) �(L; h) � �(L;L) 8 h 2 (L;H]: (55)

This leads directly to Proposition 5.

Proposition 5 If Z[��(L;H)] � ��1 the payo¤s and outcomes under the least-cost separating

contract are the unique payo¤s and outcomes.

The intuition for Proposition 5 is straightforward. If the speculator cannot be incentivized

to produce su¢ ciently precise signals, even when her incentives are maximized under full asset

securitization, then the costs of underpriced securities exceed the value of immediate liquidity and

the high owner of a high quality asset avoids issuing any risky security. Rather, he gets the maximal

liquidity possible using safe debt.

Recall, the objective in Program 3 is to �nd the pooling contract preferred by the high type.

Apparently, if Z[��(L;H)] � ��1 it is impossible to �nd a pooling contract that makes him better

o¤. And since we ignored the welfare of the low type in that program, it follows that there is no

Pareto-improving contract across the owner types. Also, the actual outcome for all agents under

the pooling contract described in Proposition 5 is identical to that under the LCSE. Thus, the

outcomes under the LCSE are the unique payo¤s whenever Z[��(L;H)] � ��1. That is, when

Z[��(L;H)] � ��1; private owners choose structures that achieve e¢ cient risk sharing.

Consider next the outcome when the speculator can be incentivized to produce more precise

signals. It is readily veri�ed that

�Z[��(L;H)] > 1) �(L;H) > �(L;L): (56)

It follows that when �Z[��(L;H)] > 1; the high type can do strictly better than under the separating

contract, which gives him �(L;L). It is also readily veri�ed that

�2(L; h) = �Z[��(L;H)]� 1 8 h 2 (���L;H): (57)

It follows that when �Z[��(L;H)] > 1; setting h = H strictly dominates any h 2 (���L;H):

Also, it is clear that the low type is better o¤ under the pooling contract since he bene�ts from
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security mispricing, resulting in him receiving more than �L: The preceding results lead directly to

Proposition 6.

Proposition 6 If Z[��(L;H)] > ��1 the optimal pooling contract for the high type entails a risky

securitization with l� = L and h� 2 fH [ (L; ���L]g. Under this contract, information is produced

by the speculator and hedgers are imperfectly insured. Both owner types are strictly better o¤ under

this pooling contract than under the least-cost separating equilibrium, so the latter is not a unique

equilibrium of the security design game.

Finally, we are interested in su¢ cient conditions such that the optimal pooling contract entails

full securitization of the underlying tangible asset. To this end note that

� � q�1 ) �2(L; h) > 1 8 h 2 (L;H):

This leads directly to Proposition 7.

Proposition 7 There exists a liquidity value �full 2 [Z(��(L;H))�1; q�1) such that for all � � �full

the optimal pooling contract for the high type entails full securitization with l� = L and h� = H.

Optimal structuring then follows Proposition 3. Under this structuring, information is produced by

the speculator and the hedgers are imperfectly insured.

D. Public versus Private Incentives in Securitization

For simplicity, assume the planner places equal weight on all agents including Owner, the hedgers,

market-makers and the speculator. Under symmetric information, the owner sells the entire asset in

the �rst period and converts the proceeds into � units of �rst-period consumption. The speculator

and market-makers consume their endowments. Finally, the hedgers consume their �rst period

endowment minus the cost of buying � units of consumption in the second period with probability

one half. That is, under symmetric information the hedgers attain c2 = 0 with probability one.

Thus, �rst best welfare is:

WFB = �[qH + (1� q)L] + yS1 + yMM
1 + y1 �

�

2
: (58)
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Ex ante the planner computes the following welfare loss in the LCSE relative to �rst-best:

LOSSSEP = q(� � 1)(H � L): (59)

The only deadweight loss in the LCSE is the loss in NPV resulting from the high type operating the

new short-term project below optimal scale. From a risk sharing perspective the LCSE is attractive,

since full revelation of information allows hedgers to perfectly insure.

Consider next a pooling equilibrium in which the asset is fully securitized under the corresponding

optimal structuring described in Proposition 3. In contrast to the separating equilibrium, a pooling

equilibrium results in the constrained socially optimal investment in the short-term technology.

However, it entails costly e¤ort on the part of the speculator and ine¢ cient risk sharing. Speci�cally,

under full-securitization of the asset we have the following welfare loss in the pooling equilibrium:

LOSSPOOL = e[��(L;H)] +
1

2
�

�1(���)Z
1

(� � 1)f(�)d� (60)

+
1

2
(1� q)�

�
1� 1

���

� �2(���)Z
�1(���)

(� � 1)f(�)d� + 1
2
q�(��� � 1)[1� F (�2(���))]

The �rst term in the welfare loss under pooling is the e¤ort cost of the speculator. The second term

represents the loss stemming from hedgers with low risk-aversion failing to insure, due to perceived

adverse selection. The third term represents the loss stemming from a subset of hedgers imperfectly

hedging. Finally, the last term represent the loss stemming from a subset of extremely risk-averse

hedgers overinsuring, since they purchase insurance without knowing the actual asset type. We also

know that:

@

@�
LOSSPOOL = e0(��)

@��

@�
+
1

2

�1(���)Z
1

(� � 1)f(�)d� (61)

+
1

2
(1� q)

�
1� 1

���

� �2(���)Z
�1(���)

(� � 1)f(�)d� + 1
2
q(��� � 1)[1� F (�2(���))] > 0:

It follows that there exists a unique value of �; call it �soc; at which a neutral social planner

would prefer the separating equilibrium over the pooling equilibrium for all � > �soc: Now note that
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if � 2 (2=(1+ q); 1=q) there exists a unique value of �; call it �own, such that �Z = 1 and the owner

of the high quality asset would prefer the pooling equilibrium over the separating equilibrium. It

follows that there exists a unique value of �, equal to the maximum of these two thresholds such

that social and private objectives con�ict, in the sense described in the following proposition.

Proposition 8 If � 2 (2=(1 + q); 1=q); there exists �crit such that for all � � �crit a neutral social

planner prefers the separating equilibrium and the owner prefers the pooling equilibrium.

The intuition behind Proposition 8 is as follows. The social welfare loss associated with the

pooling equilibrium is increasing in the size of the endowment shock hitting hedgers, since the

pooling equilibrium results in ine¢ cient insurance against the shock. However, larger shocks hitting

the hedgers increases the trading gains to informed speculation and the incentive compatible signal

precision that will be attained in the pooling equilibrium. In turn, this reduces the degree of

underpricing perceived by the owner of a high quality asset, which would tilt him towards the

pooling equilibrium.

Similarly, an increase in risk-aversion via a �rst-order stochastic dominant shift in � would also

increase the welfare loss associated with the pooling equilibrium, while simultaneously making that

equilibrium more attractive to the owner of a high quality asset. Taken together, these results

indicate that the private sector will tend to prefer the pooling equilibrium, with ine¢ cient risk

sharing, precisely when this risk sharing has the highest social value.

Conclusions

This paper evaluates privately optimal securitization structures when the original asset owner has

an intrinsic motive for raising funds immediately, but is concerned about mispricing given that he is

privately informed regarding asset value. Securities markets are endogenously incomplete, with the

securitization structure in�uencing risk sharing. Prices are set by competitive market-makers, with

an endogenously informed speculator trading against uninformed hedgers placing rational orders.
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If the speculator can be su¢ ciently incentivized, underpricing is low and all/most of the asset is

securitized in a pooling equilibrium. Here, all speculator gains are derived in the market for the

concave claim, with the optimal structuring maximizing the product of the speculator�s per-unit gain

and hedge trading volume. Hedgers imperfectly insure in pooling equilibria, as adverse selection

distorts their trading decisions.

There also exists a separating equilibrium in which a low type sells the entire asset in equity form

while a high type only sells safe debt, holding levered equity on his own books. In this separating

equilibrium, the type is fully revealed so there is no motive for speculative activity and perfect risk

sharing is achieved since investors do not fear adverse selection. However, there is a social cost to

the separating equilibrium, since the high type operates below e¢ cient scale.

The model highlights the following fundamental con�ict between private and social incentives

in choosing securitization structures: Private incentives to implement the pooling equilibrium are

strongest precisely when the gains to e¢ cient risk sharing are highest. Speci�cally, increases in the

size of endowment shocks and/or risk-aversion encourage owners to rely upon speculative activity,

rather than signaling, since higher hedge trading volume promotes information acquisition, which

reduces the extent of mispricing. Thus, the private sector will engage in socially excessive securiti-

zation, and distort risk sharing, whenever society most highly values the risk sharing bene�ts that

advocates commonly impute to such structures.
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Appendix: Proofs

Lemma 1

Substituting beliefs from equation (6) into the expected revenue (10), we obtain:

RH(�) = L+

�
q(H � L)

2

��
�2

1� q � � + 2�q + q +
(1� �)2

q + � � 2�q

�
: (62)

We need only verify the square bracketed term is increasing. Let

a(�) � q + � � 2�q


(�) � 1 +
�2

(1� a) +
(1� �)2

a
:

We need only verify 
 is increasing. Di¤erentiating we obtain:


0(�) =
2 (1� a)� + (1� 2q)�2

(1� a)2
� 2a(1� �) + (1� 2q)(1� �)

2

a2
(63)

=
[2 (1� a) + (1� 2q)�]�a2 � (1� a)2(1� �) [2a+ (1� 2q)(1� �)]

(1� a)2 a2

This is strictly positive if and only if.

[2 (1� a) + �(1� 2q)]�a2 > (1� a)2(1� �) [2a+ (1� 2q)� �(1� 2q)]

m

[(1� a) + (1� q)]�a2 > (1� a)2(1� �) [a+ (1� q)]

m

(1� q)�a2 > (1� a)
�
(1� �)(1� a)a+ (1� �)(1� q)(1� a)� �a2

�
m

(1� q)�a2 > (1� a) [a(1� a)� a� + (1� �)(1� q)(1� a)]

m

[(1� q)a+ 1� a]�a > (1� a)2 [a+ (1� �)(1� q)]

m
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[1� qa]�a > (1� a)2(1� q�)

m

�a� �qa2 > (1� a)2 � q�(1� a)2

m

q�
�
(1� a)2 � a2

�
+ �a > (1� a)2

m

q� + �a(1� 2q) > (1� a)2

m

a2 + q(� � a) > (1� a)2

m

q2(2� � 1) + 2 [� � q(2� � 1)] > 1

m

(q � 1)2(2� � 1)� (2� � 1) + 2� > 1

m

(q � 1)2(2� � 1) > 0.�

Proposition 1

Consider a graph with X on the vertical axis and � on the horizontal axis. Plotting aggregate

hedging demand, we know X(1=2) 2 (�=BH ; �BL): Further, X is strictly decreasing in � on [1=2; 1]:

Plotting the incentive compatible signal precision, we know �ic is strictly increasing in X with

��1ic (1=2) = 0 and the limit as �1 converges to one of �
�1
ic (�1) =1: Thus, the two curves intersect

once, and only once, implying a unique equilibrium exists.�

Lemma 4

Suppose Owner sells N � 3 securities. Rank these securities in descending order in terms of the
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ratio of their payo¤ if value is low relative to their payo¤ if value is high. Section III establishes that

hedge trading will be concentrated in security 1, and security 1 will be the only source of informed

trading gains. Aggregate demand of the hedgers and informed trader will then be zero in securities

2 to N: Therefore, one may roll up these securities into a single (weakly convex) security having no

e¤ect on � or expected revenues.�

Lemma 7

Di¤erentiating the maximand one obtains

M 0(�)

�
= 1� F (�2) + ��2[F (�2)� F (�1)]� (1� ��1)[f(�1)�01 + f(�2)�02(�� 1)]:

And

M
00
(�)

�
= �2��2f(�1)�01 � 2��3[F (�2)� F (�1)]

�(1� ��1)[f 0(�1)(�01)2 + f 0(�2)(�02)2]

�(1� ��1)[2(1 + ��1)f(�2)�02 � f(�1)j�001j]:

Since F is convex, a su¢ cient condition for M
00
< 0 is j�001j � �02; which always holds.�

Lemma 10

This lemma is proved in a series of steps. First, we claim

h� = H ) l� = L:

and

l� < L) h� < H:

To demonstrate this, note

h� = H ) 8l 2 (0; L); ��(l; h�) = 0) �1(l; h
�) > 0:

Next we claim

��(l�; h�) = 0) l� = L:
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To demonstrate this suppose to the contrary that (l0; h0) are optimal with ��(l0; h0) = 0 but l0 < L:

Then consider increasing l by " arbitrarily small, noting that such an increase meets all constraints

including monotonicity since ��(l0; h0) = 0 implies h0 > l0: The gain is "�(1�Z) > 0; contradicting

the initial conjecture.

Next we claim

��(l�; h�) > 0) l� = L:

To demonstrate this claim, suppose to the contrary that (l0; h0) are optimal with ��(l0; h0) > 0 but

l0 < L: Then let �0 � h0=l0 and consider all pairs (l; �0l): By construction, all such pairs keep Z

�xed at Z[��(l0; h0)] � Z0: Then consider

d

dl
�[l; �0l] = �(1� Z0) + �0[�Z0 � 1] 8 l 2 (0; L):

Note that the value of this derivative is constant by construction. We next claim the derivative must

be weakly positive. For if it is not, the optimal policy is to decrease both l and h to zero leaving

the owner to collect � = H which is strictly dominated by l = h = L: Finally, since the derivative

is weakly positive l� = L:�
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