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Abstract

We consider the probabilistic numerical scheme for fully nonlinear PDEs suggested

in [12], and show that it can be introduced naturally as a combination of Monte Carlo

and finite differences scheme without appealing to the theory of backward stochastic dif-

ferential equations. Our first main result provides the convergence of the discrete-time

approximation and derives a bound on the discretization error in terms of the time step.

An explicit implementable scheme requires to approximate the conditional expectation

operators involved in the discretization. This induces a further Monte Carlo error. Our

second main result is to prove the convergence of the latter approximation scheme,

and to derive an upper bound on the approximation error. Numerical experiments are

performed for the approximation of the solution of the mean curvature flow equation in

dimensions two and three, and for two and five-dimensional (plus time) fully-nonlinear

Hamilton-Jacobi-Bellman equations arising in the theory of portfolio optimization in

financial mathematics.

Key words: Viscosity Solutions, monotone schemes, Monte Carlo approximation,

second order backward stochastic differential equations.
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1 Introduction

We consider the probabilistic numerical scheme for the approximation of the solution of a

fully-nonlinear parabolic Cauchy problem suggested in [12]. In the latter paper, a repre-

sentation of the solution of the PDE is derived in terms of the newly introduced notion of
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second order backward stochastic differential equations, assuming that the fully-nonlinear

parabolic Cauchy problem has a smooth solution. Then, similarly to the case of backward

stochastic differential equations which are connected to semi-linear PDEs, this representa-

tion suggests a backward probabilistic numerical scheme.

The representation result of [12] can be viewed as an extension of the Feynman-Kac rep-

resentation result, for the linear case, which is widely used in order to approach the numer-

ical approximation problem from the probabilistic viewpoint, and to take advantage of the

high dimensional properties of Monte Carlo methods. Previously, the theory of backward

stochastic differential equations provided an extension of these approximation methods to

the semi-linear case. See for instance Chevance [13], El Karoui, Peng and Quenez [18], Bally

and Pagès [2], Bouchard and Touzi [9] and Zhang [32]. In particular, the latter papers pro-

vide the convergence of the “natural” discrete-time approximation of the value function

and its partial space gradient with the same L2 error of order
√
h, where h is the length of

time step. The discretization involves the computation of conditional expectations, which

need to be further approximated in order to result into an implementable scheme. We refer

to [2], [9] and [20] for an complete asymptotic analysis of the approximation, including the

regression error.

In this paper, we observe that the backward probabilistic scheme of [12] can be introduced

naturally without appealing to the notion of backward stochastic differential equation. This

is shown is Section 2 where the scheme is decomposed into three steps:

(i) The Monte Carlo step consists in isolating the linear generator of some underlying

diffusion process, so as to split the PDE into this linear part and a remaining nonlinear

one.

(ii) Evaluating the PDE along the underlying diffusion process, we obtain a natural discrete-

time approximation by using finite differences approximation in the remaining nonlinear

part of the equation.

(iii) Finally, the backward discrete-time approximation obtained by the above steps (i)-(ii)

involves the conditional expectation operator which is not computable in explicit form. An

implementable probabilistic numerical scheme therefore requires to replace such conditional

expectations by a convenient approximation, and induces a further Monte Carlo type of

error.

In the present paper, we do not require the fully nonlinear PDE to have a smooth solution,

and we only assume that it satisfies a comparison result in the sense of viscosity solutions.

Our main objective is to establish the convergence of this approximation towards the unique

viscosity solution of the fully-nonlinear PDE, and to provide an asymptotic analysis of the

approximation error.

Our main results are the following. We first prove the convergence of the discrete-time

approximation for general nonlinear PDEs, and we provide bounds on the corresponding

approximation error for a class of Hamilton-Jacobi-Bellman PDEs. Then, we consider the

implementable scheme involving the Monte Carlo error, and we similarly prove a conver-

gence result for general nonlinear PDEs, and we provide bounds on the error of approxi-

mation for Hamilton-Jacobi-Bellman PDEs. We observe that our convergence results place

some restrictions on the choice of the diffusion of the underlying diffusion process. First, a
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uniform ellipticity condition is needed; we believe that this technical condition can be re-

laxed in some future work. More importantly, the diffusion coefficient is needed to dominate

the partial gradient of the remaining nonlinearity with respect to its Hessian component.

Although we have no theoretical result that this condition is necessary, our numerical ex-

periments show that the violation of this condition leads to a serious mis-performance of

the method, see Figure 5.

Our proofs rely on the monotonic scheme method developed by Barles and Souganidis

[7] in the theory of viscosity solutions, and the recent method of shaking coefficients of

Krylov [24], [25] and [26] and Barles and Jakobsen [6], [5] and [4]. The use of the latter

type of methods in the context of a stochastic scheme seems to be new. Notice however,

that our results are of a different nature than the classical error analysis results in the

theory of backward stochastic differential equations, as we only study the convergence of

the approximation of the value function, and no information is available for its gradient or

Hessian with respect to the space variable.

The following are two related numerical methods based on finite differences in the context

of Hamilton-Jacobi-Bellman nonlinear PDEs:

• Bonnans and Zidani [8] introduced a finite difference scheme which satisfies the crucial

monotonicity condition of Barles and Souganidis [7] so as to ensure its convergence.

Their main idea is to discretize both time and space, approximate the underlying

controlled forward diffusion for each fixed control by a controlled local Markov chain

on the grid, approximate the derivatives in certain directions which are found by

solving some further optimization problem, and optimize over the control. Beyond

the curse of dimensionality problem which is encountered by finite differences schemes,

we believe that our method is much simpler as the monotonicity is satisfied without

any need to treat separately the linear structures for each fixed control, and without

any further investigation of some direction of discretization for the finite differences.

• An alternative finite-differences scheme is the semi-Lagrangian method which solves

the monotonicity requirement by absorbing the dynamics of the underlying state in

the finite difference approximation, see e.g. Debrabant and Jakobsen [15], Camilli

and Jacobsen [11], Camilli and Falcone [10], and Munos and Zidani [30] . Loosely

speaking, this methods is close in spirit to ours, and corresponds to freezing the

Brownian motion Wh, over each time step h, to its average order
√
h. However it

does not involve any simulation technique, and requires the interpolation of the value

function at each time step. Thus it is also subject to the curse of dimensionality

problems.

We finally observe a connection with the recent work of Kohn and Serfaty [23] who provide

a deterministic game theoretic interpretation for fully nonlinear parabolic problems. The

game is time limited and consists of two players. At each time step, one tries to maximize her

gain and the other to minimize it by imposing a penalty term to her gain. The nonlinearity

of the fully nonlinear PDE appears in the penalty. Also, although the nonlinear penalty does

not need to be elliptic, a parabolic nonlinearity appears in the limiting PDE. This approach
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is very similar to the representation of [12] where such a parabolic envelope appears in the

PDE, and where the Brownian motion plays the role of Nature playing against the player.

The paper is organized as follows. In Section 2, we provide a natural presentation of

the scheme without appealing to the theory of backward stochastic differential equations.

Section 3 is dedicated to the asymptotic analysis of the discrete-time approximation, and

contains our first main convergence result and the corresponding error estimate. In Section

4, we introduce the implementable backward scheme, and we further investigate the induced

Monte Carlo error. We again prove convergence and we provide bounds on the approxi-

mation error. Finally, Section 5 contains some numerical results for the mean curvature

flow equation on the plane and space, and for a five-dimensional Hamilton-Jacobi-Bellman

equation arising in the problem of portfolio optimization in financial mathematics.

Notations For scalars a, b ∈ R, we write a ∧ b := min{a, b}, a ∨ b := max{a, b}, a− :=

max{−a, 0}, and a+ := max{a, 0}. By M(n, d), we denote the collection of all n×d matrices

with real entries. The collection of all symmetric matrices of size d is denoted Sd, and its

subset of nonnegative symmetric matrices is denoted by S+
d . For a matrix A ∈M(n, d), we

denote by AT its transpose. For A,B ∈M(n, d), we denote A ·B := Tr[ATB]. In particular,

for d = 1, A and B are vectors of Rn and A ·B reduces to the Euclidean scalar product.

For a function u from [0, T ] × Rd to R, we say that u has q−polynomial growth (resp.

α−exponential growth) if

sup
t≤T, x∈Rd

|u(t, x)|
1 + |x|q

<∞, (resp. sup
t≤T, x∈Rd

e−α|x||u(t, x)| <∞).

For a suitably smooth function ϕ on QT := (0, T ]× Rd, we define

|ϕ|∞ := sup
(t,x)∈QT

|ϕ(t, x)| and |ϕ|1 := |ϕ|∞ + sup
QT×QT

|ϕ(t, x)− ϕ(t′, x′)|
(x− x′) + |t− t′|

1
2

.

Finally, we denote the Lp−norm of a r.v. R by ‖R‖p := (E[|R|p])1/p.

2 Discretization

Let µ and σ be two maps from R+ × Rd to Rd and M(d, d), respectively. With a := σσT.

We define the linear operator:

LXϕ :=
∂ϕ

∂t
+ µ ·Dϕ+

1

2
a ·D2ϕ.

Given a map

F : (t, x, r, p, γ) ∈ R+ × Rd × R× Rd × Sd 7−→ F (x, r, p, γ) ∈ R

we consider the Cauchy problem:

−LXv − F
(
·, v,Dv,D2v

)
= 0, on [0, T )× Rd, (2.1)

v(T, ·) = g, on ∈ Rd. (2.2)
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Under some conditions, a stochastic representation for the solution of this problem was pro-

vided in [12] by means of the newly introduced notion of second order backward stochastic

differential equations. As an important implication, such a stochastic representation sug-

gests a probabilistic numerical scheme for the above Cauchy problem.

The chief goal of this section is to obtain the probabilistic numerical scheme suggested

in [12] by a direct manipulation of (2.1)-(2.2) without appealing to the notion of backward

stochastic differential equations.

To do this, we consider an Rd-valued Brownian motion W on a filtered probability space

(Ω,F ,F,P), where the filtration F = {Ft, t ∈ [0, T ]} satisfies the usual completeness condi-

tions, and F0 is trivial.

For a positive integer n, let h := T/n, ti = ih, i = 0, . . . , n, and consider the one step

ahead Euler discretization

X̂t,x
h := x+ µ(t, x)h+ σ(t, x)(Wt+h −Wt), (2.3)

of the diffusion X corresponding to the linear operator LX . Our analysis does not require

any existence and uniqueness result for the underlying diffusionX. However, the subsequent

formal discussion assumes it in order to provides a natural justification of our numerical

scheme.

Assuming that the PDE (2.1) has a classical solution, it follows from Itô’s formula that

Eti,x
[
v
(
ti+1, Xti+1

)]
= v (ti, x) + Eti,x

[∫ ti+1

ti

LXv(t,Xt)dt

]
where we ignored the difficulties related to local martingale part, and Eti,x := E[·|Xti = x]

denotes the expectation operator conditional on {Xti = x}. Since v solves the PDE (2.1),

this provides

v(ti, x) = Eti,x
[
v
(
ti+1, Xti+1

)]
+ Eti,x

[∫ ti+1

ti

F (·, v,Dv,D2v)(t,Xt)dt

]
.

By approximating the Riemann integral, and replacing the process X by its Euler dis-

cretization, this suggest the following approximation of the value function v

vh(T, .) := g and vh(ti, x) := Th[vh](ti, x), (2.4)

where we denoted for a function ψ : R+ × Rd −→ R with exponential growth:

Th[ψ](t, x) := E
[
ψ(t+ h, X̂t,x

h )
]

+ hF (·,Dhψ) (t, x), (2.5)

Dkhψ(t, x) := E[Dkψ(t+ h, X̂t,x
h )], k = 0, 1, 2, Dhψ :=

(
D0
hψ,D1

hψ,D2
hψ
)T
, (2.6)

and Dk is the k−th order partial differential operator with respect to the space variable x.

The differentiations in the above scheme are to be understood in the sense of distributions.

This algorithm is well-defined whenever g has exponential growth and F is a Lipschitz

map. To see this, observe that any function with exponential growth has weak gradient

and Hessian because the Gaussian kernel is a Schwartz function, and the exponential growth

is inherited at each time step from the Lipschitz property of F .
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At this stage, the above backward algorithm presents the serious drawback of involving

the gradient Dvh(ti+1, .) and the Hessian D2vh(ti+1, .) in order to compute vh(ti, .). The

following result avoids this difficulty by an easy integration by parts argument.

Lemma 2.1. For every function ϕ : QT → R with exponential growth, we have:

Dhϕ(ti, x) = E
[
ϕ(ti+1, X̂

ti,x
h )Hh(ti, x)

]
,

where Hh = (Hh
0 , H

h
1 , H

h
2 )T and

Hh
0 = 1, Hh

1 =
(
σT
)−1 Wh

h
, Hh

2 =
(
σT
)−1 WhW

T
h − hId
h2

σ−1. (2.7)

Proof. The main ingredient is the following easy observation. Let G be a one dimensional

Gaussian random variable with unit variance. Then, for any function f : R −→ R with

exponential growth, we have:

E[f(G)Hk(G)] = E[f (k)(G)], (2.8)

where f (k) is the k−th order derivative of f in the sense of distributions, and Hk is the

one-dimensional Hermite polynomial of degree k.

1 Now, let ϕ : Rd −→ R be a function with exponential growth. Then, by direct

conditioning, it follows from (2.8) that

E
[
ϕ(X̂t,x

h )W i
h

]
= h

d∑
j=1

E
[
∂ϕ

∂xj
(X̂t,x

h )σji(t, x)

]
,

and therefore:

E
[
ϕ(X̂t,x

h )Hh
1 (t, x)

]
= σ(t, x)TE

[
∇ϕ(X̂t,x

h )
]
.

2 For i 6= j, it follows from (2.8) that

E
[
ϕ(X̂t,x

h )W i
hW

j
h

]
= h

d∑
k=1

E
[
∂ϕ

∂xk
(X̂t,x

h )W j
hσki(t, x)

]

= h2
d∑

k,l=1

E
[

∂2ϕ

∂xk∂xl
(X̂t,x

h )σlj(t, x)σki(t, x)

]
,

and for j = i:

E
[
ϕ(X̂t,x

h )((W i
h)2 − h)

]
= h2

d∑
k,l=1

E
[

∂2ϕ

∂xk∂xl
(X̂t,x

h )σli(t, x)σki(t, x)

]
.

This provides:

E
[
ϕ(X̂t,x

h )Hh
2 (t, x)

]
= σ(t, x)TE

[
∇2ϕ(X̂t,x

h )σ(t, x)
]
.

2

In view of Lemma 2.1, the iteration which computes vh(ti, .) out of vh(ti+1, .) in (2.4)-(2.5)

does not involve the gradient and the Hessian of the latter function.
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Remark 2.2. Clearly, one can proceed to different choices for the integration by parts in

Lemma 2.1. One such possibility leads to the representation of Dh2ϕ as:

Dh2ϕ(t, x) = E

[
ϕ(X̂t,x

h )(σT)−1 Wh/2

(h/2)

WT
h/2

(h/2)
σ−1

]
.

This representation shows that the backward scheme (2.4) is very similar to the probabilistic

numerical algorithm suggested in [12].

Observe that the choice of the drift and the diffusion coefficients µ and σ in the nonlinear

PDE (2.1) is arbitrary. So far, it has been only used in order to define the underlying

diffusion X. Our convergence result will however place some restrictions on the choice of

the diffusion coefficient, see Remark 3.4.

Once the linear operator LX is chosen in the nonlinear PDE, the above algorithm handles

the remaining nonlinearity by the classical finite differences approximation. This connection

with finite differences is motivated by the following formal interpretation of Lemma 2.1,

where for ease of presentation, we set d = 1, µ ≡ 0, and σ(x) ≡ 1:

• Consider the binomial random walk approximation of the Brownian motion Ŵtk :=∑k
j=1wj , tk := kh, k ≥ 1, where {wj , j ≥ 1} are independent random variables

distributed as 1
2

(
δ√h + δ−

√
h

)
. Then, this induces the following approximation:

D1
hψ(t, x) := E

[
ψ(t+ h,Xt,x

h )Hh
1

]
≈ ψ(t, x+

√
h)− ψ(t, x−

√
h)

2
√
h

,

which is the centered finite differences approximation of the gradient.

• Similarly, consider the trinomial random walk approximation Ŵtk :=
∑k

j=1wj , tk :=

kh, k ≥ 1, where {wj , j ≥ 1} are independent random variables distributed as
1
6

(
δ{
√

3h} + 4δ{0} + δ{−
√

3h}

)
, so that E[wnj ] = E[Wn

h ] for all integers n ≤ 4. Then,

this induces the following approximation:

D2
hψ(t, x) := E

[
ψ(t+ h,Xt,x

h )Hh
2

]
≈ ψ(t, x+

√
3h)− 2ψ(t, x) + ψ(t, x−

√
3h)

3h
,

which is the centered finite differences approximation of the Hessian.

In view of the above interpretation, the numerical scheme studied in this paper can be

viewed as a mixed Monte Carlo–Finite Differences algorithm. The Monte Carlo component

of the scheme consists in the choice of an underlying diffusion process X. The finite dif-

ferences component of the scheme consists in approximating the remaining nonlinearity by

means of the integration-by-parts formula of Lemma 2.1.

3 Asymptotics of the discrete-time approximation

3.1 The main results

Our first main convergence results follow the general methodology of Barles and Souganidis

[7], and requires that the nonlinear PDE (2.1) satisfies a comparison result in the sense of

viscosity solutions.
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We recall that an upper-semicontinuous (resp. lower semicontinuous) function v (resp.

v) on [0, T ] × Rd, is called a viscosity subsolution (resp. supersolution) of (2.1) if for any

(t, x) ∈ [0, T )× Rd and any smooth function ϕ satisfying

0 = (v − ϕ)(t, x) = max
[0,T ]×Rd

(v − ϕ)

(
resp. 0 = (v − ϕ)(t, x) = min

[0,T ]×Rd
(v − ψ)

)
,

we have:

−LXϕ− F (t, x,Dϕ(t, x)) ≤ (resp. ≥) 0.

Definition 3.1. We say that (2.1) has comparison for bounded functions if for any bounded

upper semicontinuous subsolution v and any bounded lower semicontinuous supersolution v

on [0, T )× Rd, satisfying

v(T, ·) ≤ v(T, ·),

we have v ≤ v.

Remark 3.2. Barles and Souganidis [7] use a stronger notion of comparison by accounting

for the final condition, thus allowing for a possible boundary layer. In their context, a

supersolution v and a subsolution v satisfy:

min
{
−LXv(T, x)− F (T, x,Dv(T, x)), v(T, x)− g(x)

}
≤ 0 (3.1)

max
{
−LXv(T, x)− F (T, x,Dv(T, x)), v(T, x)− g(x)

}
≥ 0. (3.2)

We observe that, by the nature of our equation, (3.1) and (3.2) imply that the subsolution

v ≤ g and the supersolution v ≥ g, i.e. the final condition holds in the usual sense,

and no boundary layer can occur. To see this, without loss of generality we suppose that

F (t, x, r, p, γ) is decreasing with respect to r (see Remark 3.13). Let ϕ be a function

satisfying

0 = (v − ϕ)(T, x) = max
[0,T ]×Rd

(v − ϕ).

Then define ϕK(t, ·) = ϕ(t, ·) +K(T − t) for K > 0. Then v − ϕK also has a maximum at

(T, x), and the subsolution property (3.1) implies that

min
{
−LXϕ(T, x)− F (T, x,Dϕ(T, x)) +K, v(T, x)− g(x)

}
≤ 0.

For a sufficiently large K, this provides the required inequality v(T, x)−g(x) ≤ 0. A similar

argument shows that (3.1) implies that v − g ≥ 0.

In the sequel, we denote by Fr, Fp and Fγ the partial gradients of F with respect to

r, p and γ, respectively. We also denote by F−γ the pseudo-inverse of the non-negative

symmetric matrix Fγ . We recall that any Lipschitz function is differentiable a.e.

Assumption F (i) The nonlinearity F is Lipschitz-continuous with respect to (x, r, p, γ)

uniformly in t, and |F (·, ·, 0, 0, 0)|∞ <∞;

(ii) F is elliptic and dominated by the diffusion of the linear operator LX , i.e.

∇γF ≤ a on Rd × R× Rd × Sd; (3.3)

(iii) Fp ∈ Image(Fγ) and
∣∣FT
p F
−
γ Fp

∣∣
∞ < +∞.
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Remark 3.3. Assumption F (iii) is equivalent to

|m−F |∞ <∞ where mF := min
w∈Rd

{
Fp · w + wTFγw

}
. (3.4)

This is immediately seen by recalling that, by the symmetric feature of Fγ , any w ∈ Rd has

an orthogonal decomposition w = w1+w2 ∈ Ker(Fγ)⊕Image(Fγ), and by the nonnegativity

of Fγ :

Fp · w + wTFγw = Fp · w1 + Fp · w2 + wT
2 Fγw2

= −1

4
FT
p F
−
γ Fp + Fp · w1 +

∣∣1
2

(F−γ )1/2 · Fp − F 1/2
γ w2

∣∣2.
Remark 3.4. The above Condition (3.3) places some restrictions on the choice of the

linear operator LX in the nonlinear PDE (2.1). First, F is required to be uniformly elliptic,

implying an upper bound on the choice of the diffusion matrix σ. Since σσT ∈ S+
d , this

implies in particular that our main results do not apply to general degenerate nonlinear

parabolic PDEs. Second, the diffusion of the linear operator σ is required to dominate the

nonlinearity F which places implicitly a lower bound on the choice of the diffusion σ.

Example 3.5. Let us consider the nonlinear PDE in the one-dimensional case −∂v
∂t −

1
2

(
a2v+

xx − b2v−xx
)

where 0 < b < a are given constants. Then if we restrict the choice of the

diffusion to be constant, it follows from Condition F that 1
3a

2 ≤ σ2 ≤ b2, which implies that

a2 ≤ 3b2. If the parameters a and b do not satisfy the latter condition, then the diffusion

σ has to be chosen to be state and time dependent.

Theorem 3.6 (Convergence). Let Assumption F hold true, and |µ|1, |σ|1 < ∞ and σ is

invertible. Also assume that the fully nonlinear PDE (2.1) has comparison for bounded

functions. Then for every bounded Lipschitz function g, there exists a bounded function v

so that

vh −→ v locally uniformly.

In addition, v is the unique bounded viscosity solution of problem (2.1)-(2.2).

Remark 3.7. Under the boundedness condition on the coefficients µ and σ, the restriction

to a bounded terminal data g in the above Theorem 3.6 can be relaxed by an immediate

change of variable. Let g be a function with α−exponential growth for some α > 0. Fix

some M > 0, and let ρ be an arbitrary smooth positive function with:

ρ(x) = eα|x| for |x| ≥M,

so that both ρ(x)−1∇ρ(x) and ρ(x)−1∇2ρ(x) are bounded. Let

u(t, x) := ρ(x)−1v(t, x) for (t, x) ∈ [0, T ]× Rd.

Then, the nonlinear PDE problem (2.1)-(2.2) satisfied by v converts into the following

nonlinear PDE for u:

− LXu− F̃
(
·, u,Du,D2u

)
= 0 on [0, T )× Rd (3.5)

v(T, ·) = g̃ := ρ−1g on Rd,
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where

F̃ (t, x, r, p, γ) := rµ(x) · ρ−1∇ρ+
1

2
Tr
[
a(x)

(
rρ−1∇2ρ+ 2pρ−1∇ρT

)]
+ρ−1F

(
t, x, rρ, r∇ρ+ pρ, r∇2ρ+ 2p∇ρT + ργ

)
.

Recall that the coefficients µ and σ are assumed to be bounded. Then, it is easy to see

that F̃ satisfies the same conditions as F . Since g̃ is bounded, the convergence Theorem

3.6 applies to the nonlinear PDE (3.5). 2

Remark 3.8. Theorem 3.6 states that the inequality (3.3) (i.e. diffusion must dominate

the nonlinearity in γ) is sufficient for the convergence of the Monte Carlo–Finite Differences

scheme. We do not know whether this condition is necessary:

• Subsection 3.4 suggests that this condition is not sharp in the simple linear case,

• however, our numerical experiments of Section 5 reveal that the method may have a poor

performance in the absence of this condition, see Figure 5.

We next provide bounds on the rate of convergence of the Monte Carlo–Finite Differences

scheme in the context of nonlinear PDEs of the Hamilton-Jacobi-Bellman type in the same

context as [6]. The following assumptions are stronger than Assumption F and imply that

the nonlinear PDE (2.1) satisfies a comparison result for bounded functions.

Assumption HJB The nonlinearity F satisfies Assumption F(ii)-(iii), and is of the

Hamilton-Jacobi-Bellman type:

1

2
a · γ + b · p+ F (t, x, r, p, γ) = inf

α∈A
{Lα(t, x, r, p, γ)}

Lα(t, x, r, p, γ) :=
1

2
Tr[σασαT(t, x)γ] + bα(t, x)p+ cα(t, x)r + fα(t, x)

where the functions µ, σ, σα, bα, cα and fα satisfy:

|µ|∞ + |σ|∞ + sup
α∈A

(|σα|1 + |bα|1 + |cα|1 + |fα|1) < ∞.

Assumption HJB+ The nonlinearity F satisfies HJB, and for any δ > 0, there exists

a finite set {αi}Mδ
i=1 such that for any α ∈ A:

inf
1≤i≤Mδ

|σα − σαi |∞ + |bα − bαi |∞ + |cα − cαi |∞ + |fα − fαi |∞ ≤ δ.

Remark 3.9. The assumption HJB+ is satisfied if A is a separable topological space and

σα(·), bα(·), cα(·) and fα(·) are continuous maps from A to C
1
2
,1

b ; the space of bounded

maps which are Lipschitz in x and 1
2–Hölder in t.

Theorem 3.10 (Rate of Convergence). Assume that the final condition g is bounded

Lipschitz-continuous. Then, there is a constant C > 0 such that:
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(i) under Assumption HJB, we have v − vh ≤ Ch1/4,

(ii) under the stronger condition HJB+, we have −Ch1/10 ≤ v − vh ≤ Ch1/4.

The above bounds can be improved in some specific examples. See Subsection 3.4 for the

linear case where the rate of convergence is improved to
√
h.

We also observe that, in the PDE Finite Differences literature, the rate of convergence

is usually stated in terms of the discretization in the space variable |∆x|. In our context

of stochastic differential equation, notice that |∆x| is or the order of h1/2. Therefore, the

above upper and lower bounds on the rate of convergence corresponds to the classical rate

|∆x|1/2 and |∆x|1/5, respectively.

3.2 Proof of the convergence result

We now provide the proof Theorem 3.6 by building on Theorem 2.1 and Remark 2.1 of

Barles and Souganidis [7] which requires the scheme to be consistent, monotone and stable.

Moreover, since we are assuming the (weak) comparison for the equation, we also need to

prove that our scheme produces a limit which satisfies the terminal condition in the usual

sense, see Remark 3.2.

Throughout this section, all the conditions of Theorem 3.6 are in force.

Lemma 3.11. Let ϕ be a smooth function with bounded derivatives. Then for all (t, x) ∈
[0, T ]× Rd:

lim
(t′, x′)→ (t, x)

(h, c)→ (0, 0)

t′ + h ≤ T

[c+ ϕ](t′, x′)−Th[c+ ϕ](t′, x′)

h
= −

(
LXϕ+ F (·, ϕ,Dϕ,D2ϕ)

)
(t, x).

The proof is a straightforward application of Itô’s formula, and is omitted.

Lemma 3.12. Let ϕ,ψ : [0, T ]× Rd −→ R be two Lipschitz functions. Then:

ϕ ≤ ψ =⇒ Th[ϕ](t, x) ≤ Th[ψ](t, x) + Ch E[(ψ − ϕ)(t+ h, X̂t,x
h )] for some C > 0

where C depends only on constant K in (3.4).

Proof. By Lemma 2.1 the operator Th can be written as:

Th[ψ](t, x) = E
[
ψ(X̂t,x

h )
]

+ hF
(
t, x,E[ψ(X̂t,x

h )Hh(t, x)]
)
.

Let f := ψ − ϕ ≥ 0 where ϕ and ψ are as in the statement of the lemma. Let Fτ denote

the partial gradient with respect to τ = (r, p, γ). By the mean value Theorem:

Th[ψ](t, x)−Th[ϕ](t, x) = E
[
f(X̂t,x

h )
]

+ hFτ (θ) · Dhf(X̂t,x
h )

= E
[
f(X̂t,x

h ) (1 + hFτ (θ) ·Hh(t, x))
]
,

for some θ = (t, x, r̄, p̄, γ̄). By the definition of Hh(t, x):

Th[ψ]−Th[ϕ] = E
[
f(X̂t,x

h )
(
1 + hFr + Fp.(σ

T)−1Wh + h−1Fγ · (σT)−1(WhW
T
h − hI)σ−1

)]
,

11



where the dependence on θ and x has been omitted for notational simplicity. Since Fγ ≤ a
by (3.4) of Assumption F, we have 1− a−1 · Fγ ≥ 0 and therefore:

Th[ψ]−Th[ϕ] ≥ E
[
f(X̂t,x

h )
(
hFr + Fp.σ

T−1
Wh + h−1Fγ · σT−1

WhW
T
h σ
−1
)]

= E
[
f(X̂t,x

h )

(
hFr + hFp.σ

T−1Wh

h
+ hFγ · σT−1WhW

T
h

h2
σ−1

)]
.

Let m−F := max{−mF , 0}, where the function mF is defined in (3.4). Under Assumption

F, we have K := |m−F |∞ <∞, then

Fp.σ
T−1Wh

h
+ hFγ · σT−1WhW

T
h

h2
σ−1 ≥ −K

one can write,

Th[ψ]−Th[ϕ] ≥ E
[
f(X̂t,x

h ) (hFr − hK)
]
≥ −C ′hE

[
f(X̂t,x

h )
]

for some constant C > 0, where the last inequality follows from (3.4). 2

The following observation will be used in the proof of Theorem 3.10 below.

Remark 3.13. The monotonicity result of the previous Lemma 3.12 is slightly different

from that required in [7]. However, as it is observed in Remark 2.1 in [7], their convergence

theorem holds under this approximate monotonicity. From the previous proof, we observe

that if the function F satisfies the condition:

Fr −
1

4
FT
p F
−
γ Fp ≥ 0, (3.6)

then, the standard monotonicity condition

ϕ ≤ ψ =⇒ Th[ϕ](t, x) ≤ Th[ψ](t, x) (3.7)

holds. Using the parabolic feature of the equation, we may introduce a new function

u(t, x) := eθ(T−t)v(t, x) which solves a nonlinear PDE satisfying (3.6). Indeed, direct cal-

culation shows that the PDE inherited by u is:

− LXu− F
(
·, u,Du,D2u

)
= 0, on [0, T )× Rd (3.8)

u(T, x) = g(x), on Rd, (3.9)

where F (t, x, r, p, γ) = eθ(T−t)F (t, x, e−θ(T−t)r, e−θ(T−t)p, e−θ(T−t)γ) + θr. Then, it is easily

seen that F satisfies the same conditions as F together with (3.6) for sufficiently large θ.

Lemma 3.14. Let ϕ,ψ : [0, T ] × Rd −→ R be two L∞−bounded functions. Then there

exists a constant C > 0 such that

|Th[ϕ]−Th[ψ]|∞ ≤ |ϕ− ψ|∞(1 + Ch)

In particular, if g is L∞−bounded, the family (vh)h defined in (2.4) is L∞−bounded, uni-

formly in h.
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Proof. Let f := ϕ− ψ. Then, arguing as in the previous proof,

Th[ϕ]−Th[ψ] = E
[
f(X̂h)

(
1− a−1 · Fγ + h|Ah|2 + hFr −

h

4
FT
p F
−
γ Fp

)]
.

where

Ah =
1

2
(F−γ )1/2Fp − F 1/2

γ σT−1Wh

h
.

Since 1 − Tr[a−1Fγ ] ≥ 0, |Fr|∞ < ∞, and |FT
p F
−
γ Fp|∞ < ∞ by Assumption F, it follows

that

|Th[ϕ]−Th[ψ]|∞ ≤ |f |∞
(
1− a−1 · Fγ + hE[|Ah|2] + Ch

)
But, E[|Ah|2] = h

4F
T
p F
−
γ Fp + a−1 · Fγ . Therefore, by Assumption F

|Th[ϕ]−Th[ψ]|∞ ≤ |f |∞
(

1 +
h

4
FT
p F
−
γ Fp + Ch

)
≤ |f |∞(1 + C̄h).

To prove that the family (vh)h is bounded, we proceed by backward induction. By the

assumption of the lemma vh(T, .) = g is L∞−bounded. We next fix some i < n and we

assume that |vh(tj , .)|∞ ≤ Cj for every i + 1 ≤ j ≤ n − 1. Proceeding as in the proof of

Lemma 3.12 with ϕ ≡ vh(ti+1, .) and ψ ≡ 0, we see that∣∣∣vh(ti, .)
∣∣∣
∞
≤ h |F (t, x, 0, 0, 0)|+ Ci+1(1 + Ch).

Since F (t, x, 0, 0, 0) is bounded by Assumption F, it follows from the discrete Gronwall

inequality that |vh(ti, .)|∞ ≤ CeCT for some constant C independent of h. 2

Remark 3.15. The approximate function vh defined by (2.4) is only defined on {ih|i =

0, · · · , N} × Rd. Our methodology requires to extend it to any t ∈ [0, T ]. This can be

achieved by any interpolation, as long as the regularity property of vh mentioned in Lemma

3.16 below is preserved. For instance, on may simply use linear interpolation.

Lemma 3.16. The function vh is Lipschitz in x, uniformly in h.

Proof. We report the following calculation in the one-dimensional case d = 1 in order to

simplify the presentation.

1. For fixed t ∈ [0, T −h], we argue as in the proof of Lemma 3.12 to see that for x, x′ ∈ Rd

with x > x′:

vh(t, x)− vh(t, x′) = A+ hB, (3.10)

where, denoting δ(k) := Dkvh(t+ h, X̂t,x
h )−Dkvh(t+ h, X̂t,x′

h ) for k = 0, 1, 2:

A := E
[
δ(0)
]

+ h
(
F
(
t, x′,Dvh(t+ h, X̂t,x

h )
)
− F

(
t, x′,Dvh(t+ h, X̂t,x′

h )
)

= E
[
(1 + hFr)δ

(0) + hFpδ
(1) + hFγδ

(2)
]
,

|B| :=
∣∣∣F(t, x,Dvh(t+ h, X̂t,x

h )
)
− F

(
t, x′,Dvh(t+ h, X̂t,x

h )
)∣∣∣ ≤ |Fx|∞|x− x′|,
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by Assumption F (i). By Lemma 2.1 we write for k = 1, 2:

E
[
δ(k)
]

= E
[
δ(0)Hh

k (t, x) + vh(t+ h, X̂t,x′

h )
(
Hh
k (t, x)−Hh

k (t, x′)
) ]

= E
[
δ(0)Hh

k (t, x) +Dvh(t+ h, X̂t,x′

h )

(
Wh

h

)k−1 (
σ(t, x)−k − σ(t, x′)−k

)
σ(t, x′)

]
.

Then, dividing both sides of (3.10) by x− x′ and taking limsup, if follows from the above

equalities that

lim sup
|x−x′|↘0

|vh(t, x)− vh(t, x′)|
(x− x′)

≤ E
[∣∣∣∣ lim sup
|x−x′|↘0

vh(t+ h, X̂t,x
h )− vh(t+ h, X̂t,x′

h )

(x− x′)

(
1 + hFr + Fp

Wh

σ(t, x)
+ Fγ

W 2
h − h

σ(t, x)2h

)
+Dvh(t+ h, X̂t,x

h )

(
WhFγ

−2σx(t, x)

σ(t, x)2
+ hFp

σx(t, x)

σ(t, x)

)∣∣∣∣]+ Ch.

2. Assume vh(t+ h, .) is Lipschitz with constant Lt+h. Then

lim sup
|x−x′|↘0

|vh(t, x)− vh(t, x′)|
(x− x′)

≤ Lt+hE
[∣∣∣∣(1 + µx(t, x)h+ σx(t, x)

√
hN)

(
1 + hFr + Fp

√
hN

σ(t, x)
+ Fγ

N2

σ(t, x)2
− Fγ
σ(t, x)2

)
+
√
hNFγ

−2σx(t, x)

σ(t, x)2
+ hFp

σx(t, x)

σ(t, x)

∣∣∣∣]+ Ch.

Observe that

Fp
σx
σ

= σx
Fp√
Fγ

√
Fγ

σ
1Fγ 6=0.

Since all terms on the right hand-side are bounded, under our assumptions, it follows that

|Fp σxσ |∞ < ∞ (we emphasize that the geometric structure imposed in Assumption F (iii)

provides this result in any dimension). Then:

lim sup
|x−x′|↘0

|vh(t, x)− vh(t, x′)|
(x− x′)

≤ Lt+h

(
E
[∣∣∣(1 + µx(t, x)h+ σx(t, x)

√
hN)

(
1 + Fp

√
hN

σ(t, x)
+ Fγ

N2

σ(t, x)2
− Fγ
σ(t, x)2

)
+
√
hNFγ

−2σx(t, x)

σ(t, x)2

∣∣∣]+ Ch

)
+ Ch.

3. Let P̃ be the probability measure equivalent to P defined by the density

Z := 1− α+ αN2 where α =
Fγ

σ(t, x)2
.

Then,

lim sup
|x−x′|↘0

|vh(t, x)− vh(t, x′)|
(x− x′)

≤Lt+h
(
EP̃
[∣∣∣∣(1 + µx(t, x)h+ σx(t, x)

√
hN
)(

1 + Z−1Fp

√
hN

σ(t, x)

)
+Z−1

√
hNFγ

−2σx(t, x)

σ(t, x)2

∣∣∣∣]+ Ch

)
+ Ch.
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By Cauchy–Schwartz inequality, we have

lim sup
|x−x′|↘0

|vh(t, x)− vh(t, x′)|
x− x′

≤Lt+h
(
EP̃
[∣∣∣∣(1 + µx(t, x)h+ σx(t, x)

√
hN
)(

1 + Z−1Fp

√
hN

σ(t, x)

)
+Z−1

√
hNFγ

−2σx(t, x)

σ(t, x)2

∣∣∣∣2] 1
2

+ Ch

)
+ Ch

By writing back the expectation in terms of probability P,

lim sup
|x−x′|↘0

|vh(t, x)− vh(t, x′)|
x− x′

≤Lt+h
(
E
[
Z

∣∣∣∣(1 + µx(t, x)h+ σx(t, x)
√
hN
)(

1 + Z−1Fp

√
hN

σ(t, x)

)
+Z−1

√
hNFγ

−2σx(t, x)

σ(t, x)2

∣∣∣∣2] 1
2

+ Ch

)
+ Ch.

By expanding the quadratic term inside the expectation, we observe that expectation of all

the terms having
√
h, is zero. Therefore,

lim sup
|x−x′|↘0

|vh(t, x)− vh(t, x′)|
(x− x′)

≤Lt+h
(
EP̃
[∣∣∣∣(1 + µx(t, x)h+ σx(t, x)

√
hN
)(

1 + Z−1Fp

√
hN

σ(t, x)

)
+Z−1

√
hNFγ

−2σx(t, x)

σ(t, x)2

∣∣∣∣2] 1
2

+ Ch

)
+ Ch

≤Lt+h
(

(1 + C ′h)
1
2 + Ch

)
+ Ch,

which leads to

lim sup
|x−x′|↘0

|vh(t, x)− vh(t, x′)|
(x− x′)

≤ CeC
′T/2,

for some constants C,C ′ > 0. 2

Finally, we prove that the terminal condition is preserved by our scheme as the time step

shrinks to zero.

Lemma 3.17. For each x ∈ Rd and tk = kh with k = 1, · · · , n, we have;

|vh(tk, x)− g(x)| ≤ C(T − tk)
1
2 .

Proof. 1. By the same argument as in the proof of Lemma 3.14, we have: and for j ≥ i:

vh(tj , X̂
ti,x
tj

) = Etj
[
vh(tj+1, X̂

ti,x
tj+1

)
(
1− αj + αjN

2
j

)]
+h

(
F j0 + F jrEtj [v

h(tj+1, X̂
ti,x
tj+1

)] + F jp · Etj [Dvh(tj+1, X̂
ti,x
tj+1

)]

)
,

where F j0 := F (tj , X̂
ti,x
tj

, 0, 0, 0), αj , F
j
r , F jp are Ftj−adapted random variables defined as in

the proof of Lemma 3.14 at tj , and Nj =
Wtj+1−Wtj√

h
has a standard Gaussian distribution.

Combine the above formula for j from i to n− 1, we see that

vh(ti, x) = E
[
g(X̂ti,x

T )Pi,n

]
+hE

n−1∑
j=i

F j0 +F jrEtj [v
h(tj+1, X̂

ti,x
tj+1

)]+F jp ·Etj [Dvh(tj+1, X̂
ti,x
tj+1

)],
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where Pi,k :=
∏k−1
j=i

(
1− αj + αjN

2
j

)
> 0 a.s. for all 1 ≤ i < k ≤ n and Pi,i = 1. Obviously

{Pi,k, i ≤ k ≤ n} is a martingale for all i ≤ n, a property which will be used later. Since

|F (·, ·, 0, 0, 0)|∞ < +∞, and using Assumption F and Lemmas 3.16 and 3.14:

|vh(ti, x)− g(x)| ≤
∣∣∣E [(g(X̂ti,x

T )− g(x)
)
Pi,n

]∣∣∣+ C(T − ti). (3.11)

2. Let {gε}ε be the family of smooth functions obtained from g by convolution with a

family of mollifiers {ρε}, i.e. gε = g ∗ ρε. Note that we have

|gε − g|∞ ≤ Cε, |Dgε|∞ ≤ |Dg|∞ and |D2gε|∞ ≤ ε−1|Dg|∞. (3.12)

Then:∣∣∣E [(g(X̂ti,x
T )− g(x)

)
Pi,n

]∣∣∣ ≤ E
[∣∣∣g(X̂ti,x

T )− gε(X̂ti,x
T )Pi,n

∣∣∣]
+
∣∣∣E [(gε(X̂ti,x

T )− gε(x)
)
Pi,n

]∣∣∣+ |gε − g|∞

≤ Cε+
∣∣∣E [(gε(X̂ti,x

T )− gε(x)
)
Pi,n

]∣∣∣
≤ Cε+

∣∣∣∣E[Pi,n ∫ T

ti

(
Dgεb̂+

1

2
Tr
[
D2gε)â

])
(s, X̂ti,x

s )ds
]∣∣∣∣

+

∣∣∣∣E[Pi,n ∫ T

ti

Dgε(X̂
ti,x
s )σ̂(s)dWs

]∣∣∣∣ , (3.13)

where we denoted b̂(s) = b(tj , X̂
ti,x
tj

) and σ̂(s) = σ(tj , X̂
ti,x
tj

) for tj ≤ s < tj+1 and â = σ̂T σ̂.

We next estimate each term separately.

2.a. First, since {Pi,k, i ≤ k ≤ n} is a martingale:

∣∣∣E[Pi,n ∫ T

ti

Dgε(X̂
ti,x
s )σ̂(s)dWs

]∣∣∣ =
∣∣∣ n−1∑
j=i

E
[
Pi,n

∫ tj+1

tj

Dgε(X̂
ti,x
s )σ̂(s)dWs

]∣∣∣
≤

n−1∑
j=i

∣∣∣E[Pi,j+1

∫ tj+1

tj

Dgε(X̂
ti,x
s )σ̂(s)dWs

]∣∣∣
=

n−1∑
j=i

∣∣∣E[Pi,j σ̂(tj)Etj
[
Pj,j+1

∫ tj+1

tj

Dgε(X̂
ti,x
s )dWs

]]∣∣∣.
Notice that

Etj

[
Pj,j+1

∫ tj+1

tj

Dgε(X̂
ti,x
s )dWs

]
= Etj

[
(Wtj+1 −Wtj )

2

∫ tj+1

tj

Dgε(X̂
ti,x
s )dWs

]

= Etj

[∫ tj+1

tj

2WsDgε(X̂
ti,x
s )ds

]
.
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Using Lemma 2.1 and (3.12), this provides:∣∣∣E[Pi,n ∫ T

ti

Dgε(X̂
ti,x
s )σ̂(s)dWs

]∣∣∣ (3.14)

≤ 2

n−1∑
j=i

∣∣∣E[Pi,j+1σ̂(tj)
2αj
h
Etj
[ ∫ tj+1

tj

sD2gε(X̂
ti,x
s )ds

]]∣∣∣,
≤ Cε−1

n−1∑
j=i

h ≤ C ′(T − ti)ε−1. (3.15)

2.c. By (3.12) and the boundedness of b and σ, we also estimate that:∣∣∣∣Dgε(X̂ti,x
s )b̂(s, X̂ti,x

s ) +
1

2
Tr
[
D2gε(X̂

ti,x
s )â(s, X̂ti,x

s )
]∣∣∣∣ ≤ C + Cε−1. (3.16)

2.b. Plugging (3.15) and (3.16) into (3.13), we obtain:∣∣∣E [(gε(X̂ti,x
T )− gε(x)

)
Pi,n

]∣∣∣ ≤ C(T − ti) + C(T − ti)ε−1,

which by (3.11) provides:

|vh(ti, x)− g(x)| ≤ Cε+ C(T − ti)ε−1 + C(T − ti).

The required result follows from the choice ε =
√
T − ti. 2

Corollary 3.18. The function vh is 1/2-Hölder continuous on t uniformly on h.

Proof. The proof of 1
2 -Hölder continuity with respect to t could be easily provided by

replacing g and vh(tk, ·) in the assertion of Lemma respectively by vh(t, ·) and vh(t′, ·) and

consider the scheme from 0 to time t′ with time step equal to h. Therefore, we can write;

|vh(t, x)− vh(t′, x)| ≤ C(t′ − t)
1
2 ,

where C could be chosen independent of t′ for t′ ≤ T . 2

3.3 Derivation of the rate of convergence

The proof of Theorem 3.10 is based on Barles and Jakobsen [6], which uses switching

systems approximation and the Krylov method of shaking coefficients [24].

3.3.1 Comparison result for the scheme

Because F does not satisfy the standard monotonicity condition (3.7) of Barles and Sougani-

dis [7], we need to introduce the nonlinearity F of Remark 3.13 so that F satisfies (3.6).

Let uh be the familiy of functions defined by

uh(T, .) = g and uh(ti, x) = Th[uh](ti, x), (3.17)

where for a function ψ from [0, T ]× Rd to R with exponential growth:

Th[ψ](t, x) := E
[
ψ(t+ h, X̂t,x

h )
]

+ hF (·,Dhψ) (t, x),
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and set

vh(ti, x) := e−θ(T−ti)uh(ti, x), i = 0, . . . , n. (3.18)

The following result shows that the difference vh − vh is of higher order, and thus reduces

the error estimate problem to the analysis of the difference vh − v.

Lemma 3.19. Under Assumption F, we have

lim sup
h↘0

h−1|(vh − vh)(t, .)|∞ < ∞.

Proof. By definition of F , we directy calculate that:

vh(t, x) = e−θh(1 + hθ)E[vh(t+ h, X̂t,x
h )] + hF

(
t+ h, x,Dhvh(t, x)

)
.

Since 1+hθ = eθh+O(h2), this shows that vh(t, x) = Th[vh](t, x)+O(h2). By lemma 3.14,

we conclude that:

|(vh − vh)(t, ·)|∞ ≤ (1 + Ch)|(vh − vh)(t+ h, ·)|∞ +O(h2),

which shows by the Gronwall inequality that |(vh− vh)(t, ·)|∞ ≤ O(h) for all t ≤ T −h. 2

By Remark 3.13, the operator Th satisfies the standard monotonicity condition (3.7):

ϕ ≤ ψ =⇒ Th[ϕ] ≤ Th[ψ]. (3.19)

The key-ingredient for the derivation of the error estimate is the following comparison result

for the scheme.

Proposition 3.20. Let Assumption F holds true, and set β := |Fr|∞. Consider two

arbitrary bounded functions ϕ and ψ satisfying:

h−1
(
ϕ−Th[ϕ]

)
≤ g1 and h−1

(
ψ −Th[ψ]

)
≥ g2 (3.20)

for some bounded functions g1 and g2. Then, for every i = 0, · · · , n:

(ϕ− ψ)(ti, x) ≤ eβ(T−ti)|(ϕ− ψ)+(T, ·)|∞ + (T − h)eβ(T−ti)|(g1 − g2)+|∞. (3.21)

To prove this comparison result, we need the following strengthening of the monotonicity

condition:

Lemma 3.21. Let Assumption F hold true and let β := |Fr|∞. Then, for every a, b ∈ R+,

and every bounded functions ϕ ≤ ψ, the function δ(t) := eβ(T−t)(a+ b(T − t)) satisfies:

Th[ϕ+ δ](t, x) ≤ Th[ψ](t, x) + δ(t)− hb, t ≤ T − h, x ∈ Rd.
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Proof. Because δ does not depend on x, we have Dh[ϕ + δ] = Dhϕ + δ(t + h)e1, where

e1 := (1, 0, 0). Then, it follows from the regularity of F that there exist some ξ such that:

F
(
t+ h, x,Dh[ϕ+ δ](t, x)

)
= F

(
t+ h, x,Dhϕ(t, x)

)
+ δ(t+ h)F r

(
t+ h, x, ξe1 +Dhϕ(t, x)

)
,

and

Th[ϕ+ δ](t, x) = δ(t+ h) + E[ϕ(t+ h, X̂t,x
h )] + hF

(
t+ h, x,Dhϕ(t, x)

)
+hδ(t+ h)F r

(
t+ h, x, ξe1 +Dhϕ(t, x)

)
= Th[ϕ](t, x) + δ(t+ h)

{
1 + hF r

(
t+ h, x, ξe1 +Dhϕ(t, x)

)}
≤ Th[ϕ](t, x) + (1 + βh) δ(t+ h).

Since Th satisfies the standard monotonicity condition (3.19), this provides:

Th[ϕ+ δ](t, x) ≤ Th[ψ](t, x) + δ(t) + ζ(t), where ζ(t) := (1 + βh) δ(t+ h)− δ(t).

It remains to prove that ζ(t) ≤ −hb. From the smoothness of δ, we have δ(t+ h)− δ(t) =

hδ′(t̄) for some t̄ ∈ [t, t+ h). Then, since δ is decreasing in t, we see that

h−1ζ(t) = δ′(t̄) + βδ(t+ h) ≤ δ′(t̄) + βδ(t̄) ≤ −beβ(T−t̄),

and the required estimate follows from the restriction b ≥ 0. 2

Proof of Proposition 3.20. We may refer directly to the similar result of [6]. However

in our context, we give the following simpler proof. Observe that we may assume without

loss of generality that

ϕ(T, ·) ≤ ψ(T, ·) and g1 ≤ g2. (3.22)

Indeed, one can otherwise consider the function

ψ̄ := ψ + eβ(T−t) (a+ b(T − t)) where a = |(ϕ− ψ)+(T, ·)|∞, b = |(g1 − g2)+|∞,

and β is the parameter defined in the previous Lemma 3.21, so that ψ̄(T, ·) ≥ ϕ(T, ·) and,

by Lemma (3.21), ψ̄(t, x)−Th[ψ̄](t, x) ≥ h(g1 ∨ g2). Hence (3.22) holds true for ϕ and ψ̄.

We now prove the required result by induction. First ϕ(T, ·) ≤ ψ(T, ·) by (3.22). We next

assume that ϕ(t + h, ·) ≤ ψ(t + h, ·) for some t + h ≤ T . Since Th satisfies the standard

monotonicity condition (3.19), it follows from (3.22) that

Th[ϕ](t, x) ≤ Th[ψ](t, x).

On the other hand, under (3.22), the hypothesis of the lemma implies:

ϕ(t, x)−Th[ϕ](t, x) ≤ ψ(t, x)−Th[ψ](t, x).

Then ϕ(t, ·) ≤ ψ(t, ·). 2
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3.3.2 Proof of Theorem 3.10 (i)

Under the conditions of Assumption HJB on the coefficients, we may build a bounded

subsolution vε of the nonlinear PDE, by the method of shaking the coefficients, which is

Lipschitz in x, 1/2−Hölder continuous in t, and approximates uniformly the solution v:

v − ε ≤ vε ≤ v.

Let ρ(t, x) be a C∞ positive function supported in {(t, x) : t ∈ [0, 1], |x| ≤ 1} with unit

mass, and define

wε(t, x) := vε ∗ ρε where ρε(t, x) :=
1

εd+2
ρ

(
t

ε2
,
x

ε

)
(3.23)

so that, from the convexity of the operator F ,

wε is a subsolution of (2.1), |wε − v| ≤ 2ε. (3.24)

Moreover, since vε is Lipschitz in x, and 1/2−Hölder continuous in t,

wε is C∞, and
∣∣∣∂β0t Dβwε

∣∣∣ ≤ Cε1−2β0−|β|1 for any (β0, β) ∈ N× Nd \ {0}, (3.25)

where |β|1 :=
∑d

i=1 βi, and C > 0 is some constant. As a consequence of the consistency

result of Lemma 3.11 above, we know that

Rh[wε](t, x) :=
wε(t, x)−Th[wε](t, x)

h
+ LXwε(t, x) + F (·, wε, Dwε, D2wε)(t, x)

converges to 0 as h→ 0. The next key-ingredient is to estimate the rate of convergence of

Rh[wε] to zero:

Lemma 3.22. For a family {ϕε}0<ε<1 of smooth functions satisfying (3.25), we have:

|Rh[ϕε]|∞ ≤ R(h, ε) := C hε−3 for some constant C > 0.

The proof of this result is reported at the end of this section. From the previous estimate

together with the subsolution property of wε, we see that wε ≤ Th[wε] +Ch2ε−3. Then, it

follows from Proposition 3.20 that

wε − vh ≤ C|(wε − vh)(T, .)|∞ + Chε−3 ≤ C(ε+ hε−3). (3.26)

We now use (3.24) and (3.26) to conclude that

v − vh ≤ v − wε + wε − vh ≤ C(ε+ hε−3).

Minimizing the right hand-side estimate over the choice of ε > 0, this implies the upper

bound on the error v − vh:

v − vh ≤ Ch1/4. (3.27)

20



3.3.3 Proof of Theorem 3.10 (ii)

The results of the previous section, together with the reinforced assumption HJB+, allow

to apply the switching system method of Barles and Jakobsen [6] which provides the lower

bound on the error:

v − vh ≥ − inf
ε>0
{Cε1/3 +R(h, ε)} = −C ′h1/10,

for some constants C,C ′ > 0. The required rate of convergence follows again from Lemma

3.19 which states that the difference vh−vh is dominated by the above rate of convergence.

Proof of Lemma 3.22 Notice that the evolution of the Euler approximation X̂t,x
h be-

tween t and t+h is driven by a constant drift µ(t, x) and a constant diffusion σ(t, x). Since

Dϕε is bounded, it follows from Itô’s formula that:

1

h

[
Eϕε(t+ h, X̂x

h)− ϕε(t, x)
]
− LXϕε(t, x) =

1

h
E
∫ t+h

t

(
LX̂t,x

ϕε(u, X̂
x
u)− LXϕε(t, x)

)
du,

where LX̂t,x
is the Dynkin operator associated to the Euler scheme:

LX̂t,x
ϕ(t′, x′) = ∂tϕ(t′, x′) + µ(t, x)Dϕ(t′, x′) +

1

2
Tr
[
a(t, x)D2ϕ(t′, x′)

]
.

Applying again Itô’s formula, and using the fact that LX̂t,x
Dϕε is bounded, leads to

1

h

[
Eϕε(t+ h, X̂x

h)− ϕε(t, x)
]
− LXϕε(t, x) =

1

h
E
∫ t+h

t

∫ u

t
LX̂t,xLX̂t,x

ϕε(s, X̂
x
s )dsdu.

Using the boundedness of the coefficients µ and σ, it follows from (3.25) that for ε ∈ (0, 1):∣∣∣∣∣Eϕε(t+ h, X̂x
h)− ϕε(t, x)

h
− LXϕε(t, x)

∣∣∣∣∣ ≤ R0(h, ε) := C hε−3.

Step 2 This implies that

|Rh[ϕε](t, x)| ≤

∣∣∣∣∣Eϕε(t+ h, X̂t,x
h )− ϕε(t, x)

h
− LXϕε(t, x)

∣∣∣∣∣
+
∣∣F (x, ϕε(t, x), Dϕε(t, x), D2ϕε(t, x))− F (·,Dh[ϕε](t, x))

∣∣
≤ R0(h, ε) + C

2∑
k=0

∣∣∣EDkϕε(t+ h, X̂t,x
h )−Dkϕε(t, x)

∣∣∣ (3.28)

by the Lipschitz continuity of the nonlinearity F .

By a similar calculation as in Step 1, we see that:

|EDiϕε(t+ h, X̂t,x
h )−Dϕε(t, x)| ≤ Chε−1−i, i = 0, 1, 2,

which, together with (3.28), provides the required result. 2
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3.4 The rate of convergence in the linear case

In this subsection, we specialize the discussion to the linear one-dimensional case

F (γ) = cγ, (3.29)

for some c > 0. The multi-dimensional case d > 1 can be handled similarly. Assuming that

g is bounded, the linear PDE (2.1)-(2.2) has a unique bounded solution

v(t, x) = E
[
g
(
x+
√

1 + 2c WT−t
)]

for (t, x) ∈ [0, T ]× Rd. (3.30)

We also observe that this solution v is C∞ ([0, T )× R) with

Dkv(t, x) = E
[
g(k)

(
x+
√

1 + 2c WT−t
)]
, t < T, x ∈ R. (3.31)

This shows in particular that v has bounded derivatives of any order, whenever the terminal

data g is C∞ and has bounded derivatives of any order.

Of course, one can use the classical Monte Carlo estimate to produce an approximation

of the function v of (3.30). The objective of this section is to analyze the error of the

numerical scheme outlined in the previous sections. Namely:

vh(T, ·) = g, vh(ti−1, x) = E
[
vh(ti, x+Wh)

]
+ chE

[
vh(ti, x+Wh)Hh

2

]
, i ≤ n. (3.32)

Here, σ = 1 and µ = 0 are used to write the above scheme.

Proposition 3.23. Consider the linear F of (3.29), and assume that D(2k+1)v is bounded

for every k ≥ 0. Then

lim sup
h→0

h−1/2|vh − v|∞ < ∞.

Proof. Since v has bounded first derivative with respect to x, it follows from Itô’s formula

that:

v(t, x) = E [v(t+ h, x+Wh)] + cE
[∫ h

0
4v(t+ s, v +Ws)ds

]
,

Then, in view of Lemma 2.1, the error u := v−vh satisfies u(tn, Xtn) = 0 and for i ≤ n−1:

u (ti, Xti) = Ei
[
u
(
ti+1, Xti+1

)]
+ ch Ei

[
4u

(
ti+1, Xti+1

)]
+cEi

∫ h

0

[
4v (ih+ s,Xih+s)−4v

(
(i+ 1)h,X(i+1)h

)]
ds, (3.33)

where Ei := E[·|Fti ] is the expectation operator conditional on Fti .
Step 1 Set

aki := E
[
4ku (ti, Xti)

]
, bki := E

∫ h

0

[
4kv

(
ti−1 + s,Xti−1+s

)
−4kv (ti, Xti)

]
ds,
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and we introduce the matrices

A :=



1 −1 0 · · · 0

0 1 −1 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 1 −1

0 · · · · · · 0 1


, B :=



0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · · · · · · · 0


,

and we observe that (3.33) implies that the vectors ak := (ak1, . . . , a
k
n)T and bk := (bk1, . . . , b

k
n)T

satisfy Aak = chBak+1 + cBbk for all k ≥ 0, and therefore:

ak = chA−1Bak+1 + cA−1Bbk where A−1 =


1 1 · · · 1

0 1 · · · 1
...

. . .
. . .

...

0 · · · 0 1

 . (3.34)

By direct calculation, we see that the powers (A−1B)k are given by:

(A−1B)ki,j = 1{j≥i+k}

(
j − i− 1

k − 1

)
for all k ≥ 1 and i, j = 1, . . . , n.

In particular, because akn = 0, (A−1B)n−1ak = 0. Iterating (3.34), this provides:

a0 = ch(A−1B)a1 + c(A−1B)b0 = . . . =
n−2∑
k=0

ck+1hk(A−1B)k+1bk,

and therefore:

u(0, x) = a0
1 = c

n−2∑
k=0

(ch)k(A−1B)k+1
1,j b

k. (3.35)

Because of

(A−1B)k1,j = 1{j≥1+k}

(
j − 2

k − 1

)
for all k ≥ 1 and j = 1, . . . , n ,

we can write (3.35):

u(0, x) = c
n−2∑
k=0

(ch)k
n∑

j=k+2

(
j − 2

k

)
bk−1
j .

By changing the order of the summations in the above we conclude that:

u(0, x) = c
n∑
j=2

j−2∑
k=0

(ch)k
(
j − 2

k

)
bk−1
j . (3.36)

Step 2 From our assumption that D2k+1v is L∞−bounded for every k ≥ 0, it follows that

|bkj | ≤ E

[∫ ti

ti−1

∣∣∣4kv(s,Xs)−4kv(tj , Xtj )
∣∣∣ ds] ≤ Ch3/2
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for some constant C. We then deduce from (3.36) that:

|u(0, x)| ≤ cCh3/2
n∑
j=2

j−2∑
k=0

(ch)k
(
j − 2

k

)
.

So,

|u(0, x)| ≤ cCh3/2
n∑
j=2

(1 + ch)j−2 = cCh3/2 (1 + ch)n−1 − 1

ch
≤ C

√
h.

4 Probabilistic Numerical Scheme

In order to implement the backward scheme (2.4), we still need to discuss the numerical

computation of the conditional expectations involved in the definition of the operators Th

in (2.5). In view of the Markov feature of the process X, these conditional expectations

reduce to simple regressions. Motivated by the problem of American options in financial

mathematics, various methods have been introduced in the literature for the numerical

approximation of these regressions. We refer to [9] and [20] for a detailed discussion.

The chief object of this section is to investigate the asymptotic properties of our suggested

numerical method when the expectation operator E in (2.4) is replaced by some estimator

ÊN corresponding to a sample size N :

T̃N
h [ψ](t, x) := ÊN

[
ψ(t+ h, X̂x

h)
]

+ hF
(
·, D̂hψ

)
(t, x), (4.1)

T̂N
h [ψ](t, x) := −Kh[ψ] ∨ T̃N

h [ψ](t, x) ∧Kh[ψ] (4.2)

where

D̂hψ(t, x) := ÊN
[
ψ(t+ h, X̂t,x

h )Hh(t, x)
]
, Kh[ψ] := ‖ψ‖∞(1 + C1h) + C2h,

where

C1 =
1

4
|FT
p F
−
γ Fp|∞ + |Fr|∞ and C2 = |F (t, x, 0, 0, 0)|∞.

The above bounds are needed for technical reasons which were already observed in [9].

With these notations, the implementable numerical scheme is:

v̂hN (t, x, ω) = T̂N
h [v̂hN ](t, x, ω), (4.3)

where T̂N
h is defined in (4.1)-(4.2), and the presence of ω throughout this section emphasizes

the dependence of our estimator on the underlying sample.

Let Rb be the family of random variables R of the form ψ(Wh)Hi(Wh) where ψ is a

function with |ψ|∞ ≤ b and Hi’s are the Hermite polynomials:

H0(x) = 1, H1(x) = x and H2(x) = xTx− h ∀x ∈ Rd.

Assumption E There exist constants Cb, λ, ν > 0 such that
∥∥∥ÊN [R]− E[R]

∥∥∥
p
≤ Cbh−λN−ν

for every R ∈ Rb, for some p ≥ 1.
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Example 4.1. Consider the regression approximation based on the Malliavin integration

by parts as introduced in Lions and Reigner [27], Bouchard, Ekeland and Touzi [3], and

analyzed in the context of the simulation of backward stochastic differential equations by

[9] and [14]. Then Assumption E is satisfied for every p > 1 with the constants λ = d
4p and

ν = 1
2p , see [9].

Our next main result establishes conditions on the sample size N and the time step h

which guarantee the convergence of v̂hN towards v.

Theorem 4.2. Let Assumptions E and F hold true, and assume that the fully nonlinear

PDE (2.1) has comparison with growth q. Suppose in addition that

lim
h→0

hλ+2Nν
h = ∞. (4.4)

Assume that the final condition g is bounded Lipschitz, and the coefficients µ and σ are

bounded. Then, for almost every ω:

v̂hNh(·, ω) −→ v locally uniformly,

where v is the unique viscosity solution of (2.1).

Proof. We adapt the argument of [7] to the present stochastic context. By Remark 3.13

and Lemma 3.19, we may assume without loss of generality that the strict monotonicity

(3.6) holds.

By (4.2), we see that v̂h is uniformly bounded. So, we can define:

v̂∗(t, x) := lim inf
(t′, x′)→ (t, x)

h→ 0

v̂h(t′, x′) and v̂∗(t, x) := lim sup
(t′, x′)→ (t, x)

h→ 0

v̂h(t′, x′). (4.5)

Our objective is to prove that v̂∗ and v̂∗ are respectively viscosity superpersolution and

subsolution of (2.1). By the comparison assumption, we shall then conclude that they

are both equal to the unique viscosity solution of the problem whose existence is given by

Theorem 3.6. In particular, they are both deterministic functions.

We shall only report the proof of the supersolution property, the subsolution property

follows from the same type of argument.

In order to prove that v̂∗ is a supersolution of (2.1), we consider (t0, x0) ∈ [0, T ) × Rn

together with a test function ϕ ∈ C2 ([0, T )× Rn), so that

0 = min{v̂∗ − ϕ} = (v̂∗ − ϕ)(t0, x0).

By classical manipulations, we can find a sequence (tn, xn, hn)→ (t0, x0, 0) so that v̂hn(tn, xn)→
v̂∗(t0, x0) and

(v̂hn − ϕ)(tn, xn) = min{v̂hn − ϕ} =: Cn → 0.

Then, v̂hn ≥ ϕ+ Cn, and it follows from the monotonicity of the operator Th that:

Thn [v̂hn ] ≥ Thn [ϕ+ Cn].
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By the definition of v̂hn in (4.3), this provides:

v̂hn(t, x) ≥ Thn [ϕ+ Cn](t, x)− (Thn − T̂hn)[v̂hn](t, x),

where, for ease of notations, the dependence onNh has been dropped. Because v̂hn(tn, xn) =

ϕ(tn, xn) + Cn, the last inequality gives:

ϕ(tn, xn) + Cn −Thn [ϕ+ Cn](tn, xn) + hnRn ≥ 0, Rn := h−1
n (Thn − T̂hn)[v̂hn ](tn, xn).

We claim that

Rn −→ 0 P− a.s. along some subsequence. (4.6)

Then, after passing to the subsequence, dividing both sides by hn, and sending n→∞, it

follows from Lemma 3.11 that:

−LXϕ− F
(
·, ϕ,Dϕ,D2ϕ

)
≥ 0,

which is the required supersolution property.

It remains to show (4.6). We start by bounding Rn with respect to the error of estimation

of conditional expectation. By Lemma 3.14, |Thn [v̂hn ]|∞ ≤ Khn and so by (4.2), we can

write: ∣∣∣(Thn − T̂hn

)
[v̂hn ](tn, xn)

∣∣∣ ≤ ∣∣∣(Thn − T̃hn

)
[v̂hn ](tn, xn)

∣∣∣ . (4.7)

By the Lipschitz-continuity of F , we have:∣∣∣(Thn − T̂hn

)
[v̂hn ](tn, xn)

∣∣∣ ≤ C (E0 + hnE1 + hnE2) .

where:

Ei = |(E− Ê)[v̂hn(tn + hn, X
xn
hn

)Hhn
i (tn, xn)]|

∣∣∣(Thn − T̂hn

)
[v̂hn ](tn, xn)

∣∣∣ ≤ C
(∣∣∣(E− Ê)[R0

n]
∣∣∣+
∣∣∣(E− Ê)[R1

n]
∣∣∣+ h−1

n

∣∣∣(E− Ê)[R2
n]
∣∣∣) .

where Rin = v̂hn
(
tn +hn, xn +σ(x)Wh

)
Hi(Wh), i = 1, 2, 3 and Hi is Hermite polynomial of

degree i. This leads the following estimate for the error Rn:

|Rn| ≤
C

hn

(∣∣∣(E− Ê)[R0
n]
∣∣∣+
∣∣∣(E− Ê)[R1

n]
∣∣∣+ h−1

n

∣∣∣(E− Ê)[R2
n]
∣∣∣) . (4.8)

Because Rin ∈ Rb with bound obtained in Lemma 3.14 by Assumption E we have,:

‖Rn‖p ≤ Ch−λ−2
n N−νhn ,

so by (4.4) we have ‖Rn‖p −→ 0 which implies (4.6). 2

We finally discuss the choice of the sample size so as to keep the same rate for the error

bound.
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Theorem 4.3. Let the nonlinearity F be as in Assumption HJB, and consider a regression

operator satisfying Assumption E. Let the sample size Nh be such that

lim
h→0

hλ+ 21
10Nν

h > 0. (4.9)

Then, for any bounded Lipschitz final condition g, we have the following Lp−bounds on the

rate of convergence:

‖v − v̂h‖p ≤ Ch1/10.

Proof. By Remark 3.13 and Lemma 3.19, we may assume without loss of generality that

the strict monotonicity (3.6) holds true.

We proceed as in the proof of Theorem 3.10 to see that

v − v̂h ≤ v − vh + vh − v̂h = ε+R(h, ε) + vh − v̂h.

Since v̂h satisfies (4.3),

h−1
(
v̂h −Th[v̂h]

)
≥ −Rh[v̂h] where Rh[ϕ] :=

1

h

∣∣∣(Th − T̂h

)
[ϕ]
∣∣∣ ,

where, in the present context, Rh[v̂h] is a non-zero stochastic term. By Proposition 3.20,

it follows from the last inequality that:

v − v̂h ≤ C
(
ε+R(h, ε) +Rh[v̂h]

)
,

where the constant C > 0 depends only on the Lipschitz coefficient of F , β in Lemma 3.21

and the constant in Lemma 3.22.

Similarly, we follow the line of argument of the proof of Theorem 3.10 to show that a

lower bound holds true, and therefore:

|v − v̂h| ≤ C
(
ε1/3 +R(h, ε) +Rh[v̂h]

)
,

We now use (4.9) and proceed as in the last part of the proof of Theorem 4.2 to deduce

from (4.8) and Assumption F that

‖Rh[v̂h]‖p ≤ Ch1/10.

With this choice of the sample size N , the above error estimate reduces to

‖v̂h − v‖p ≤ C
(
ε1/3 +R(h, ε) + h1/10

)
,

and the additional term h1/10 does not affect the minimization with respect to ε. 2

Example 4.4. Let us illustrate the convergence results of this section in the context of the

Malliavin integration by parts regression method of [27] and [9] where λ = d
4p and ν = 1

2p

for every p > 1. So, for the convergence result we need to choose Nh of the order of h−α0

with α0 >
d
2 + 4p. For the Lp-rate of convergence result, we need to choose Nh of the order

of h−α1 with α1 ≥ d
2 + 21p

5 .
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5 Numerical Results

In this section, we provide an application of the Monte Carlo-finite differences scheme sug-

gested in this paper in the context of two different types of problems. We first consider

the classical mean curvature flow equation as the simplest front propagation example. We

test our backward probabilistic scheme on the example where the initial data is given by a

sphere, for which an easy explicit solution is available. A more interesting geometric exam-

ple in space dimensions 2 is also considered. We next consider the Hamilton-Jacobi-Bellman

equation characterizing the classical optimal investment problem in financial mathematics.

Here, we again test our scheme in dimension two where an explicit solution is available, and

we consider more involved examples in space dimension 5, in addition to the time variable.

In all examples considered in this section the operator F (t, x, r, p, γ) does not depend on

the r−variable. We shall then drop this variable from our notations, and we simply write

the scheme as:

vh(T, .) := g and

vh(ti, x) := E[vh(ti+1, X̂
x
h)] + hF

(
ti, x,Dhvh(ti, x)

) (5.1)

where

Dhψ :=
(
D1
hψ,D2

hψ
)
,

and D1
h and D2

h are defined in Lemma 2.1. We recall from Remark 2.2 that:

D2
2hϕ(ti, x) = E

[
ϕ(ti + 2h, X̂ti,x

2h )
(
σT
)−1 (Wti+h −Wti)(Wti+h −Wti)

T − hId
h2

σ−1

]
= E

[
D1
hϕ(ti + h, X̂ti,x

h )
(
σT
)−1 Wti+h −Wti

h

]
(5.2)

The second representation is the one reported in [12] where the present backward probabilis-

tic scheme was first introduced. These two representations induce two different numerical

schemes because once the expectation operator E is replaced by an approximation ÊN ,

equality does not hold anymore in the latter equation for finite N . In our numerical ex-

amples below, we provide results for both methods. The numerical schemes based on the

first (resp. second) representation will be referred to as scheme 1 (resp. 2). An important

outcome of our numerical experiments is that scheme 2 turns out to have a significantly

better performance than scheme 1.

Remark 5.1. The second scheme needs some final condition for D1
hϕ(T,XT−h,x

h ). Since g

is smooth in all our examples, we set this final condition to ∇g. Since the second scheme

turns out to have a better performnace, we may also use the final condition for Z suggested

by the first scheme.

We finally discuss the choice of the regression estimator in our implemented examples.

Two methods have been used:

• The first method is the basis projection a la Longstaff and Schwartz [28], as devel-

oped in [20]. We use regression functions with localized support : on each support

the regression functions are chosen linear and the size of the support is adaptative

according to the Monte Carlo distribution of the underlying process.
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• The second method is based on the Malliavin integration by parts formula as suggested

in [27] and further developed in [3]. In particular, the optimal exponential localization

function φk(y) = exp(−ηky) in each direction k is chosen as follows. The optimal

parameter ηk is provided in [3] and should be chosen for each conditional expectation

depending on k. Our numerical experiments however revealed that such optimal

parameters do not provide sufficiently good performance, and more accurate results

are obtained by choosing ηk = 5/
√

∆t for all values of k.

5.1 Mean curvature flow problem

The mean curvature flow equation describes the motion of a surface where each point moves

along the inward normal direction with speed proportional to the mean curvature at that

point. This geometric problem can be characterized as the zero-level set S(t) := {x ∈ Rd :

v(t, x) = 0} of a function v(t, x) depending on time and space satisfying the geometric

partial differential equation:

vt −∆v +
Dv ·D2vDv

|Dv|2
= 0 and v(0, x) = g(x) (5.3)

and g : Rd −→ R is a bounded Lipschitz-continuous function. We refer to [31] for more

details on the mean curvature problem and the corresponding stochastic representation.

To model the motion of a sphere in Rd with radius 2R > 0, we take g(x) := 4R2− |x|2 so

that g is positive inside the sphere and negative outside. We first solve the sphere problem

in dimension 3. In this case, it is well-known that the surface S(t) is a sphere with a

radius R(t) = 2
√
R2 − t for t ∈ (0, R2). Reversing time, we rewrite (5.3) for t ∈ (0, T ) with

T = R2:

− vt −
1

2
σ2∆v + F (x,Dv,D2v) = 0 and v(T, x) = g(x), (5.4)

where

F (x, z, γ) := γ

(
1

2
σ2 − 1

)
+
z · γz
|z|2

.

We implement our Monte Carlo-finite differences scheme to provide an approximation v̂h of

the function v. As mentioned before, we implement four methods: Malliavin integration by

parts-based or basis projection-based regression, and scheme 1 or 2 for the representation

of the Hessian.

Given the approximation v̂h, we deduce an approximation of the surface Ŝh(t) := {x ∈
R3 : v̂h(t, x) = 0)} by using a dichotomic gradient descent method using the estimation

of the gradient D1v estimated along the resolution. The dichotomy is stopped when the

solution is localized within 0.01 accuracy.

Remark 5.2. Of course the use of the gradient is not necessary in the present context

where we know that S(t) is a sphere at any time t ∈ [0, T ). The algorithm described above

is designed to handle any type of geometry.
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Remark 5.3. In our numerical experiments, the nonlinearity F is truncated so that it is

bounded by an arbitrary value taken equal to 200.

Our numerical results show that Malliavin and basis projection methods give similar

results. However, for a given number of sample paths, the basis projection method of [20]

are slightly more accurate. Therefore, all results reported for this example correspond to

the basis projection method.

Figure 1 provides results obtained with one million particles and 10× 10× 10 mesh with

a time step equal to 0.0125. The diffusion coefficient σ is taken to be either 1 or 1.8.

We observe that results are better with σ = 1. We also observe that the error increases

near time 0.25 corresponding to an acceleration of the dynamics of the phenomenon, and

suggesting that a thinner time step should be used at the end of simulation.

Figure 1: Solution of the mean curvature flow for the sphere problem

Figure 2 plots the difference between our calculation and the reference for scheme 1 and

volatility 1 and 1.8 for varying time step. The corresponding results with scheme 2 are

reported in figure 3. We notice that some points at time T = 0.25 are missing due to a non

convergence of the gradient method for a diffusion σ = 1.8. We observe that results for

scheme 2 are slightly better than results for scheme 1. With σ = 1, it takes 150 seconds on

a Nehalem intel processor 2.9 GHz to obtain the result at time t = 0.15 with the regression

method, while it takes 1500 seconds with the Malliavin method (notice that the dichotomy

used with the gradient method is a very inefficient method).

We finally report in Figure 4 some numerical results for the mean curvature flow problem

in dimension 2 with a more interesting geometry: the initial surface (i.e. the zero-level

set for v) consists of two disks with unit radius, with centers positioned at -1.5 and 1.5

and connected by a stripe of unit width. We give the resulting deformation with scheme 2

for a diffusion σ = 1, a time step h = 0.0125, and one million particles. Once again, the

Malliavin integration by parts based regression method and the basis projection method

with 10× 10 meshes produce similar results. We used 1024 points to describe the surface.
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Figure 2: Mean curvature flow problem for different time step and diffusion: scheme 1

Figure 3: Mean curvature flow problem for different time step and diffusions: scheme 2

One advantage of this method is the total parallelization that can be performed to solve

the problem for different points on the surface : for the results given parallelization by

Message Passing (MPI) was achieved.

5.2 Continuous-time portfolio optimization

We next report an application to the continuous-time portfolio optimization problem in

financial mathematics. Let {St, t ∈ [0, T ]} be an Itô process modeling the price evolution of

n financial securities. The investor chooses an adapted process {θt, t ∈ [0, T ]} with values

in Rn, where θit is the amount invested in the i−th security held at time t. In addition, the

investor has access to a non-risky security (bank account) where the remaining part of his

wealth is invested. The non-risky asset S0 is defined by an adapted interest rates process

{rt, t ∈ [0, T ]}, i.e. dS0
t = S0

t rtdt, t ∈ [0, 1]. Then, the dynamics of the wealth process is
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Figure 4: Mean curvature flow problem in 2D

described by:

dXθ
t = θt ·

dSt
St

+ (Xθ
t − θt · 1)

dS0
t

S0
t

= θt ·
dSt
St

+ (Xθ
t − θt · 1)rtdt,

where 1 = (1, · · · , 1) ∈ Rd. Let A be the collection of all adapted processes θ with values

in Rd, which are integrable with respect to S and such that the process Xθ is uniformly

bounded from below. Given an absolute risk aversion coefficient η > 0, the portfolio

optimization problem is defined by:

v0 := sup
θ∈A

E
[
− exp

(
−ηXθ

T

)]
. (5.5)

Under fairly general conditions, this linear stochastic control problem can be characterized

as the unique viscosity solution of the corresponding HJB equation. The main purpose

of this subsection is to implement our Monte Carlo-finite differences scheme to derive an

approximation of the solution of the fully nonlinear HJB equation in non-trivial situations

where the state has a few dimensions. We shall first start by a two-dimensional example

where an explicit solution of the problem is available. Then, we will present some results

in a five dimensional situation.

5.2.1 A two dimensional problem

Let d = 1, rt = 0 for all t ∈ [0, 1], and assume that the security price process is defined by

the Heston model [21]:

dSt = µStdt+
√
YtStdW

(1)
t

dYt = k(m− Yt)dt+ c
√
Yt

(
ρdW

(1)
t +

√
1− ρ2dW

(2)
t

)
,
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where W = (W (1),W (2)) is a Brownian motion in R2. In this context, it is easily seen that

the portfolio optimization problem (5.5) does not depend on the state variable s. Given

an initial state at the time origin t given by (Xt, Yt) = (x, y), the value function v(t, x, y)

solves the HJB equation:

v(T, x, y) = −e−ηx and 0 = −vt − k(m− y)vy − 1
2c

2yvyy − sup
θ∈R

(
1

2
θ2yvxx + θ(µvx + ρcyvxy)

)
= −vt − k(m− y)vy − 1

2c
2yvyy +

(µvx + ρcyvxy)
2

2yvxx
.

(5.6)

A quasi explicit solution of this problem was provided by Zariphopoulou [33]:

v(t, x, y) = −e−ηx
∥∥∥∥exp

(
−1

2

∫ T

t

µ2

Ỹs
ds

)∥∥∥∥
L1−ρ2

(5.7)

where the process Ỹ is defined by

Ỹt = y and dỸt = (k(m− Ỹt)− µcρ)dt+ c

√
ỸtdWt.

In order to implement our Monte Carlo-finite differences scheme, we re-write (5.6) as:

− vt − k(m− y)vy −
1

2
c2yvyy −

1

2
σ2vxx + F

(
y,Dv,D2v

)
= 0, v(T, x, y) = −e−ηx, (5.8)

where σ > 0 and the nonlinearity F : R× R2 × S2 is given by:

F (y, z, γ) =
1

2
σ2γ11 +

(µz1 + ρcyγ12)2

2yγ11
.

Notice that the nonlinearity F does not to satisfy Assumption F, we consider the truncated

nonlinearity:

Fε,M (y, z, γ) :=
1

2
σ2γ11 − sup

ε≤θ≤M

(
1

2
θ2(y ∨ ε)γ11 + θ(µz1 + ρc(y ∨ ε)γ12

)
,

for some ε, n > 0 jointly chosen with σ so that Assumption F holds true. Under this form,

the forward two-dimensional diffusion is defined by:

dX
(1)
t = σdW

(1)
t , and dX

(2)
t = k(m−X(2)

t )dt+ c

√
X

(2)
t dW

(2)
t . (5.9)

In order to guarantee the non-negativity of the discrete-time approximation of the process

X(2), we use the implicit Milstein scheme [22]:

X(2)
n =

X
(2)
n−1 + km∆t+ c

√
X

(2)
n−1ξn

√
∆t+ 1

4c
2∆(ξ2

n − 1)

1 + k∆t
(5.10)

where (ξn)n≥1 is a sequence of independent random variable with distribution N(0, 1).

Our numerical results correspond to the following values of the parameter: µ = 0.15,

c = 0.2, k = 0.1, m = 0.3, Y0 = m, ρ = 0. The initial value of the portfolio is x0 = 1,
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the maturity T is taken equal to one year. With this parameters, the value function is

computed from the quasi-explicit formula (5.7) to be v0 = −0.3534.

We also choose M = 40 for the truncation of the nonlinearity. This choice turned out to

be critical as an initial choice of M = 10 produced an important bias in the results.

The two schemes have been tested with the Malliavin and basis projection methods. The

latter was applied with 40× 10 basis functions. We provide numerical results correspond-

ing to 2 millions particles. Our numerical results show that the Malliavin and the basis

projection methods produce very similar results, and achieve a good accuracy: with 2 mil-

lions particles, we calculate the variance of our estimates by performing 100 independent

calculations:

• the results of the Malliavin method exhibit a standard deviation smaller than 0.005

for scheme one (except for a step equal to 0.025 and a volatility equal to 1.2 where

standard deviation jumped to 0.038), 0.002 for scheme two with a computing time of

378 seconds for 40 time steps,

• the results of the basis projection method exhibit a standard deviation smaller than

0.002 for scheme 1 and 0.0009 for scheme two with a computing time of 114 seconds

for 40 time steps.

Figure 5 provides the plots of the errors obtained by the integration by parts-based

regression with Schemes one and two. All solutions have been calculated as the average

of 100 calculations. We first observe that for a small diffusion coefficient σ = 0.2, the

numerical performance of the algorithm is very poor: surprisingly, the error increases as

the time step shrinks to zero and the method seems to be biased. This numerical result

hints that the requirement that the diffusion should dominate the nonlinearity in Theorem

3.6, might be a sharp condition. We also observe that scheme one has a persistent bias

Figure 5: Difference between calculation and reference for scheme one and two

even for a very small time step, while scheme two exhibits a better convergence towards

the solution.

34



5.2.2 A five dimensional example

We now let n = 2, and we assume that the interest rate process is defined by the Ornstein-

Uhlenbeck process:

drt = κ(b− rt)dt+ ζdW
(0)
t .

While the price process of the second security is defined by a Heston model, the first

security’s price process is defined by a CEV-SV models, see e.g. [29] for a presentation of

these models and their simulation:

dS
(i)
t = µiS

(i)
t dt+ σi

√
Y

(i)
t S

(i)
t

βi
dW

(i,1)
t , β2 = 1,

dY
(i)
t = ki

(
mi − Y (i)

t

)
dt+ ci

√
Y

(i)
t dW

(i,2)
t

where
(
W (0),W (1,1),W (1,2),W (2,1),W (2,2)

)
is a Brownian motion in R5, and for simplicity

we considered a zero-correlation between the security price process and its volatility process.

Since β2 = 1, the value function of the portfolio optimization problem (5.5) does not

depend on the s(2)−variable. Given an initial state (Xt, rt, S
(1)
t , Y

(1)
t , Y

(2)
t ) = (x, r, s1, y1, y2)

at the time origin t, the value function v (t, x, r, s1, y1, y2) satisfies the HJB equation:

0 = −vt − (Lr + LY + LS
1
)v − rxvx

− sup
θ1,θ2

{
θ1 · (µ− r1)vx + θ1σ

2
1y1s

2β1−1
1 vxs1 +

1

2
(θ2

1σ
2
1y1s

2β1−2
1 + θ2

2σ
2
2y2)vxx

}
= −vt − (Lr + LY + LS

1
)v − rxvx

+
((µ1 − r)vx + σ2

1y1s
2β1−1
1 vxs1)2

2σ2
1y1s

2β1−2
1 vxx

+
((µ2 − r)vx)2

2σ2
2y2vxx

(5.11)

where

Lrv = κ(b− r)vr +
1

2
ζ2vrr, LY v =

2∑
i=1

ki (mi − yi) vyi +
1

2
c2
i yivyiyi ,

and LS
1
v = µ1s1vs1 −

1

2
σ2

1s1y1vs1s1 .

In order to implement our Monte Carlo-finite differences scheme, we re-write (5.11) as:

−vt − (Lr + LY + LS
1
)v − 1

2σ
2vxx + F

(
(x, r, s1, y1, y2), Dv,D2v

)
= 0,

v(T, x, r, s1, y1, y2) = −e−ηx,
(5.12)

where σ > 0, and the nonlinearity F : R5 × R5 × S2 is given by:

F (u, z, γ) =
1

2
σ2γ11 − x1x2z1 +

((µ1 − x2)z1 + σ2
1x4x

2β1−1
3 γ1,3)2

2σ2
1x4x

2β1−2
3 γ11

+
((µ2 − x2)z1)2

2σ2
2x5γ11

,

where u = (x1, · · · , x5). We next consider the truncated nonlinearity:

Fε,M (u, z, γ) :=
1

2
σ2γ11 − x1x2z1 + sup

ε≤|θ|≤M

{
(θ · (µ− r1)z1 + θ1σ

2
1(x4 ∨ ε)(x3 ∨ ε)2β1−1γ13

+
1

2
(θ2

1σ
2
1(x3 ∨ ε)(x4 ∨ ε)2β1−2 + θ2

2σ
2
2(x5 ∨ ε))γ11

}
,
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where ε,M > 0 are jointly chosen with σ so that Assumption F holds true. Under this

form, the forward two-dimensional diffusion is defined by:

dX
(1)
t = σdW

(0)
t , dX

(2)
t = κ(b−X(2)

t )dt+ ζdW
(1)
t ,

dX
(3)
t = µ1X

(3)
t dt+ σ1

√
X

(4)
t X

(3)
t

β1
dW

(1,1)
t , dX

(4)
t = k1(m1 −X(4)

t )dt+ c1

√
X

(4)
t dW

(1,2)
t ,

dX
(5)
t = k2(m2 −X(5)

t )dt+ c2

√
X

(5)
t dW

(2,2)
t .

(5.13)

The component X
(2)
t is simulated according to the exact discretization:

X
(2)
tn = b+ e−k∆t

(
X

(2)
tn−1
− b
)

+ ζ

√
1− exp(−2κ∆t)

2κ
ξn,

where (ξn)n≥1 is a sequence of independent random variable with distribution N(0, 1). The

following scheme for the price of the asset guarantees non-negativity (see [1]) :

lnX(3)
n = lnX

(3)
n−1 +

(
µ1 −

1

2
σ2

1

(
X

(3)
n−1

)2(β1−1)
X

(4)
n−1

)
∆t+ σ1

(
X

(3)
n−1

)βi−1
√
X

(4)
n−1∆W (1,2)

n

where ∆W
(1,2)
n := W

(1,2)
n −W (1,2)

n−1 . We take the following parameters µ1 = 0.10, σ1 = 0.3,

β1 = 0.5 for the first asset, k1 = 0.1, m1 = 1., c1 = 0.1 for the diffusion process of the

first asset. The second asset is defined by the same parameters as in the two dimensional

example: µ2 = 0.15, c2 = 0.2, m = 0.3 and Y
(2)

0 = m. As for the interest rate model we

take b = 0.07, X
(2)
0 = b, ζ = 0.3.

The initial values of the portfolio the assets prices are all set to 1. For this test case we

first use the basis projection regression method with 4 × 4 × 4 × 4 × 10 meshes and three

millions particles which, for example, takes 520 seconds for 20 time steps. Figure 6 contains

the plot of the solution obtained by scheme 2, with different time steps. We only provide

results for the implementation of scheme 1 with a coarse time step, because the method

was diverging with a thinner time step. We observe that there is still a difference for very

thin time step with the three considered values of the diffusion. This seems to indicate that

more particles and more meshes are needed. While doing many calculation we observed

that for the thinner time step mesh, the solution sometimes diverges. We therefore report

the results corresponding to thirty millions particles with 4× 4× 4× 4× 40 meshes. First

we notice that with this discretization all results are converging as time step goes to zero:

the exact solution seems to be very closed to −0.258. During our experiments with thirty

millions particles, the scheme was always converging with a very low variance on the results.

A single calculation takes 5100 seconds with 20 time steps.

Remark 5.4. With thirty millions particles, the memory needed forced us to use 64-bit

processors with more than four gigabytes of memory.

5.2.3 Conclusion on numerical results

The Monte Carlo-Finite Differences algorithm has been implemented with both schemes

suggested by (5.2), using the basis projection and Malliavin regression methods. Our
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Figure 6: Five dimensional financial problem and its results for different volatilities with 3

millions and 30 millions particles

numerical experiments reveal that the second scheme performs better both in term of results

and time of calculation for a given number of particles, independently of the regeression

method.

We also provided numerical results for different choices of the diffusion parameter in the

Monte Carlo step. We observed that small diffusion coefficients lead to poor results, which

hints that the condition that the diffusion must dominate the nonlinearity in Assumption

F (iii) may be sharp. On the other hand, we also observed that large diffusions require

a high refinement of the meshes meshes, and large number of particles, leading to a high

computational time.

Finally, let us notice that a reasonable choice of the diffusion could be time and state

dependent, as in the classical importance sampling method. We have not tried any ex-

periment in this direction, and we hope to have some theoretical results on how to choose

optimally the drift and the diffusion coefficient of the Monte Carlo step.
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