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Abstract

This article presents an empirical study of thirteen derivative markets for commodity and financial assets. This paper
goes beyond statistical analysis by including the maturity as a variable for futures contracts’s daily returns, from 1998
to 2010 and for delivery dates up to 120 months. We observe that the mean and variance of the commodities follow a
scaling behavior in the maturity dimension with an exponent characteristic of the Samuelson effect. The comparison
of the tails of the probability distribution according to the expiration dates shows that there is a segmentation in the
fat tails exponent term structure above the Lévy stable region. Finally, we compute the average tail exponent for each
maturity and we observe two regimes of extreme events for derivative markets, reminding of a phase diagram with a
sharp transition at the 18th delivery month.
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1. Introduction

In the past twenty years, physicists have made several investigations in the fields of social sciences and economics.
Their interest in economic systems was risen from the strong analogy between financial markets and complex systems.
Both indeed are open systems, far from equilibrium, with macroscopic properties emerging from sub-units interacting
non trivially. Therefore, numerous concepts and methods, such as scaling, universality, chaos, agent-based models,
have been successfully used to perform empirical investigations and develop financial markets’ modeling ([1],[2],
[3],[4], [5], [6], [7], [8]).
Among all studies, several addressed the question of statistical properties of market prices’ fluctuations. It has been
shown that irrespective of the particular asset under consideration, prices’ fluctuations distribution is characterized by
a fat tail with an exponent close to 3 ([9], [10], [11], [12],[13]). The majority of these studies provide results for stocks
or indexes but there is a lack of information about commodities in the econophysics literature. Moreover, as these
studies mainly deal with spot prices, an important and non trivial temporal aspect of derivative markets is missing: the
investigation of futures prices.
Commodity markets have experienced important evolutions in the last decades: high volatility in the prices, rise in
transaction volumes, stronger presence of financial investors seeking for diversification. The introduction of futures
contracts with longer delivery dates accompanied this evolution. It confirmed the necessity to understand and manage
the term structure of commodity prices, that is to say the relationship at a date t, between futures contract having
different maturities M. Thus term structure models for commodity prices have been developed and improved ([14],
[15], [16], among others). Inspired by contingent claim valuation models previously built for interest rates ([17]),
they were essentially gaussian. Such developments induce two questions. First, are gaussian assumptions suited for
commodity prices, especially when long-term delivery dates are concerned? In other words, do the short- and long-
term futures prices behave alike? Second, do commodities behave like other derivative assets?
This article aims at answering these questions. The statistical properties and characteristics of commodity prices
having long-term delivery dates indeed have been relatively few explored. Moreover, a comparison in the maturity



dimension with other assets is missing.
This article proceeds as follows. After the presentation of the markets and data selected for the study, we analyze the
statistical properties of futures prices and in the last section we characterize the tails of the distribution.

2. Empirical Data

Table 1: Main characteristics of the collected data: Nature of the assets, trading location, time period, last available maturities, number of records
and the contango index C.

Underlying asset Exchange-Zone Period Maturities Records C
Light crude oil CME-US 1998-2009 up to 84 2965 0.43
Brent crude ICE-Eu 2000-2009 up to 18 2523 0.44
Heating oil CME-US 1998-2009 up to 18 2835 0.55
Gasoil ICE-Eu 2000-2009 up to 12 2546 0.45
Nat. gas (US) CME-US 1998-2009 up to 36 3140 0.74
Nat. gas (Eu) ICE-Eu 1997-2009 up to 9 3055 0.63
Wheat CME-US 1998-2009 up to 15 3026 0.88
Soy bean CME-US 1998-2009 up to 14 2977 0.66
Soy oil CME-US 1998-2009 up to 15 3056 0.81
Eurodollar CME-US 1997-2009 up to 120 3056 0.64
Euribor NYSE-Eu 2000-2010 up to 39 3036 0.63
Sterling futures Euronext-Eu 1997-2010 up to 36 3451 0.55
Gold CME-US 1998-2009 up to 60 2877 0.99

For our empirical study, we selected 13 futures markets corresponding to three classes of assets: two categories of
commodities (energy and agricultural products) and financial assets. While in the majority of cases financial assets are
interest rates on different currencies (Dollar, Euro and Sterling), they also include futures contracts on gold. The latter
indeed is more an investment support than a consumption good. Among the different futures contracts negotiated
worldwide, we retained those characterized by the largest transaction volumes and the longest maturities, over a long
time period. We used the database Datastream in order to collect settlement prices on a daily basis. We rearranged the
data in order to obtain time series with constant maturities. Lastly, we had to remove or merge some of the maturities
in order to compare different markets on the same period.
Table 1 presents our database: the different underlying assets of the futures contracts selected, the name of the futures
exchange where transactions take place and its localization, the time period, the length of the prices curve, and the
number of futures prices recorded. The last column provides a synthetic information on the degree of contango C
reported on each market during the period under examination. Contango (backwardation) corresponds to a situation
where the deferred futures price is higher (lower) than the nearest price.
In derivative markets, temporal price relationships (that is to say contango and/or backwardation) result from arbi-
trage operations. The spread between the deferred and the near-term prices corresponds to the net carrying costs of the
underlying asset of the contract, that is to say the difference between the costs and benefits of holding the contracts’
support. The net carrying costs are usually positive for financial assets like interest rates: intuitively when the trans-
actions’ horizon is extended, it should become more and more expensive to borrow money. As far as commodities are
concerned, things are more contrasted. Some of the markets are most of the time in contango, as is the case for Wheat
(Fig. 1 (a)); others, like for example Light crude oil (Fig. 1 (b)), are more often in backwardation. Such a situation
reflects the fact that there is a premium for the immediate delivery of the commodity. In this study, we measured the
degree of contango of all markets by taking the difference between the 9th month - this delivery date is the longest
common maturity in our database - and the shortest available maturity. The indicator C represents the fraction of
records corresponding to a contango on the whole period. The figure reaches its maximal value for Gold, which is
always in contango. As expected, the interest rates markets are more often in contango, and the same is true for all
agricultural products and the two natural gases.
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Figure 1: Wheat (C = 0.88) and Light crude oil futures (C = 0.43) prices and returns corresponding to different delivery dates, 1998-2009. (a)
Wheat prices for the maturities: 3 months (dark), 7 months (dark gray) and 15 months (gray); (b) Light crude oil prices for the maturities: 1 (dark)
24 (dark gray) and 84 months (gray); (c) and (d) corresponding daily returns with maturities increasing from the bottom to the top. Time is given
in records.

3. Prices fluctuations

In order to examine the statistical properties of price’s fluctuations on the selected markets, we computed the
prices returns r(t) by taking the logarithm difference between two consecutive prices P(t):

r (t) =
ln (P (t)) − ln (P (t − ∆t))

∆t
, (1)

where ∆t = 1 day, except during week-ends or days-off. In order to avoid bias in the statistics, returns are not com-
puted when ∆t exceeds three days. Previous studies on prices returns in financial markets ([18], [19]) alternatively
used normalized or simple returns. After having checked that the results do not change with one or the other method,
we retained the one defined by 1.
The comparison of prices’ returns for different delivery dates, illustrated by Figures 1(c) and (d), shows that all time
series have stochastic fluctuations around zero but also that the level of the fluctuations changes significantly with the
maturity. This is a main feature of the term structures: the short maturities are affected by strong fluctuations while the
long-term prices are less volatile. Thus the variance of the prices diminishes with the maturity. This decreasing pat-
tern is usually referred to as the Samuelson effect ([20]). Intuitively, it happens because a shock affecting the nearby
contract price has an impact on succeeding prices that decreases as maturity increases. Indeed, as futures contracts
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reach their expiration date, they react much stronger to information shocks, due to the ultimate convergence of futures
prices to spot prices upon maturity. These price disturbances influencing mostly the short-term part of the curve are
due to the spot market.
Numerous works ([21], [22] and [23]) provided empirical support for this hypothesis for a large number of com-
modities and financial assets. In the case of commodities, in [24] and [25], the authors observed that the Samuelson
effect depends on the storage costs. More precisely, when the cost of storage is high, relatively little transmission of
shocks via inventory occur across periods. Futures price’s volatility consequently declines rapidly with the maturity.
Moreover, there is a modified Samuelson effect in the case of seasonal commodities. Lastly, as far as the interest rates
are concerned, the Samuelson effect can be in conflict with the monetary policy, especially on the shortest maturities.

4. Statistical properties

In this section we characterize the statistical properties of the stochastic processes underlying the returns of com-
modities and financial assets in the maturity dimension. We indeed compute the 1st to 4th moments and the tail of the
distribution of the daily logarithm prices changes.

4.1. Mean absolute returns
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Figure 2: Mean absolute returns as a function of the maturity. Left panel: Commodities following a power law function with exponents (from
bottom to top) αmean = 0.2 , 0.175 , 0.095. The circles stand for all commodities having an exponent close to 0.175. For the sake of simplicity all
curves have been shifted to the same origin. The axes are in log scale. Right panel: Mean absolute returns for the futures contracts on interest rates,
Gold, and Soy bean. The abscissa is in log scale.

In order to examine the first moment of the distribution we compute the mean of the absolute daily returns. The
latter is defined as follows:

〈|r|〉i =
1
T

T
∑

i=1
|ri|, (2)

where T denotes the total number of records and ri the return at time i.
Figures 2(a) and (b) reproduce the behavior of the mean absolute returns as a function of the maturity M. A decreas-
ing pattern with the transactions’ horizon is observed for commodities, which reflects the Samuelson effect. Among
financial assets, Gold exhibits the flattest curve. Conversely, interest rates are characterized by the presence of a bell
curve. The short-term fluctuations are lower than the mid-term ones: the monetary policy has a stabilizing influence
on interest rates, and influences mainly the short-term part of the curve. It contradicts the Samuelson effect up to 12
months.Then, the decreasing pattern observed for commodities appears again (Fig. 2(b)).
Another interesting result is that the fluctuations of commodity prices can be well described by a power law, as sug-
gested by Figure 2(a), except for Soy bean. The latter, as well as Gold, follows a linear relation with the maturity. Up
to now, we did not identify why the Soy bean stands apart. As far as Gold is concerned, as previously mentioned, this
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asset does not really belong to the class of commodities.
Most of the commodities futures contracts under consideration have thus power law decreasing mean returns. More-
over, in their majority, the commodities follow a well defined scaling behavior |r| ∼ M−αmean with a median value
αmean close to 0.175 ± 0.012. The American Natural gas follows another power law. In [26] the authors observed
that futures prices in this market have a dynamics in the maturity space which is different from that observed in other
markets. More precisely, the cross-correlations between the different maturities are subject to frequent and important
destabilizations.
Finally, a crossover appears, after the 24th month, on Figure 2(a): at this point, the power law does not hold any
more, and the mean fluctuations decrease much more slowly. This phenomenon is observed on two markets: the
American Light crude oil and Natural gas. This crossover might result from the presence of preferred habitats ([27])
for operators in commodity derivative markets, leading to different behavior of futures prices according to the range
of maturity they belong to ([28]).
The presence of a power law for commodities can be interpreted as the signature of common underlying processes
driving the dynamics of prices movements : temporal arbitrage between maturities and the Samuelson effect are two
good candidates.

4.2. Variance
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Figure 3: Variance as a function of the maturity. Left panel: commodities following a power law function with exponents (from bottom to top)
αvar = 0.333 , 0.175 , 0.181. The circles stand for all commodities having an exponent close to 0.175. For the sake of simplicity all curves have
been shifted to the same origin and the abscissa is in log scale. The axes are in log scale. Right panel: futures contracts on financial assets.

The analysis of the variance of the daily returns fluctuations, σ2
r , reinforces the conclusions reached with mean

returns. We compute the variance as follows:

σ2
r =

1
T

T
∑

i=1
(ri− < r >i)2 (3)

Figures 3(a) and (b) present our results. As was the case for the mean returns, we observe a decreasing pattern of
the fluctuations, reminiscent of the Samuelson effect. Furthermore all commodities, including Soy bean, can now be
described by a power law. Table 2 exhibits the values of the exponents of the power laws obtained for commodities,
for the mean absolute returns and the variances as well as the errors ∆ on these measures. Whatever the commodity
is concerned, the latter are low. Now the distinction between the financial underlying assets and the commodities is
very clear. Each of these category exhibits homogeneous behavior.
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Table 2: Exponents of the power law function for the mean and variance of the returns.

Futures αmean ∆αmean ασ2 ∆ασ2

Soy oil 0.095 0.004 0.181 0.008
Soy bean no no 0.267 0.017
Wheat 0.198 0.007 0.332 0.021
Light crude 0.179 0.001 0.362 0.002
Brent crude 0.160 0.002 0.315 0.003
Heating oil 0.188 0.004 0.353 0.013
Gasoil 0.163 0.003 0.321 0.002
Nat. gas (Eu) 0.2 0.005 0.333 0.02
Nat. gas (Us) 0.387 0.005 0.664 0.022

4.3. Skewness
Let us now turn to the third moment of the distribution. We compute the skewness λ3 of the returns as follows:

λ3 =
1
T

T
∑

i=1

(ri− < r >i)3

σ3
r

(4)

This measure gives the level of asymmetry of the probability distribution of a random variable. A negative (positive)
skewness indicates that the values are distributed to the right (left) of the mean.
Figure 4 provides the results for agricultural products, energy products, interest rates and Gold. Interest rates exhibit
a quite homogeneous behavior, with a negative skewness for the shortest maturities, which turns into a positive one
for maturities around one year, and then a tendency toward zero. Thus, fluctuations are usually high for the short
maturities, low for the middle ones, whereas the distribution becomes symmetrical for longer maturities. As far as
the other assets are concerned, the behavior of the skewness with the maturity is generally more regular: it is positive
and decreases with the maturity for Soy oil, Soy bean, the two natural gases and Gold. Conversely it is negative and
increases with the delivery dates for the group of petroleum products. Thus, the products characterized by a very
frequent contango seem to exhibit positive skewness, whereas backwardated markets appear to be associated with
negative skewness.
Such a result is consistent with the fact that prices’ fluctuations are not the same in contango and backwardation,
especially in commodity markets. Such markets indeed are characterized by a positive constraint on inventory, which
does not hold for financial assets used for investment purposes. When stocks are rare, in backwardation, arbitrage
operations are all the more unlikely to happen than the shortage is pronounced. In such a case, the level of prices’
spread is solely determined by the spot price the operators are willing to pay in order to immediately obtain the
merchandise. Moreover, because inventories are not sufficiently abundant to absorb the fluctuations in the demand,
the spot price is volatile, and so is the prices’ spread. Thus a longer left tail for the distribution, especially for shorter
maturities, is not a surprise. The positivity constraint disappears in contango, when stocks are abundant. In such a
case, prices’ spread are stable and, under the pressure of arbitrage operations, they are limited to the level of storage
costs. A positive skewness is thus probable.
Lastly, compared with the other assets, Gold exhibits a specific behavior: the skewness is positive, and decreasing,
which could have been expected for a market which is almost always in contango.

4.4. Kurtosis
The kurtosis of the distribution λ4 was computed in the following way:

λ4 =
1
T

T
∑

i=1

(ri− < r >i)4

σ4
r

(5)

Figure 5 displays our results. They are in line with our comments on skewness, and more precisely with the ob-
servation that there is a quite homogeneous behavior of the distribution among one class of assets. Moreover, the
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Figure 4: Skewness as a function of the maturity. (a) agricultural products; (b) energy sector; (c) interest rates; (d) gold. The abscissae of figures
(b), (c) and (d) are in log scale

fourth moment of the distribution is generally high, whatever the asset is considered. The degree of peakedness of the
distribution is however especially important for the two natural gases and the short-term maturities of interest rates.
Thus for these markets, a large part of the return’s variance is due to infrequent extreme deviations.
As far as interest rates are concerned, the presence of few large deviations in the returns is consistent with isolated
actions of the monetary authorities. As for natural gases, while the high kurtosis on short-term maturities is probably
due to storage difficulties, such an explanation does not hold for the long-term maturities on the American gas. In this
case, the lack of stability of this market, previously mentioned, can be invoked.

5. Tail exponent term structure

In this section we address the question of whether the scaling properties of returns probability distributions change
with the maturity: in other words, is there a term structure of tail exponents for derivatives? As mentioned previously,
if stocks and foreign exchange markets have received a lot of attention, such was not the case for commodities and
futures ([29], [30], [31], [32], [33]). Moreover, except for interest rates, the maturity dimension has been omitted
([34], [35], [36], [37], [18]).
One of the most frequent empirical findings concerning price fluctuations of assets is the inverse cubic law, which
stipulates that the tails of the returns are power law distributed with an exponent µ+ 1 ∼ 4. This behavior seems to be
universal. It was observed on several financial markets (stocks, stock indexes, exchange rates, interest rates, and the
nearest delivery dates of commodities), different time scales (investigations where carried on time intervals varying
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Figure 5: Kurtosis as a function of the maturity. (a) agricultural products; (b) energy sector; (c) interest rates; (d) Gold. The abscissae of figures
(b), (c) and (d) are in log scale.

from minutes to months) and different time periods ([12], [13], [11]).
In more specific studies, several authors observed that the tail exponent remains outside the Lévy stable domain,
within a range of 3 to 5, for symmetric as well as for asymmetric tails ([38], [39]). The estimate of the exponent can
be sensitive to the time scale (see for instance [40], [41]) µ is lower for high frequency data, compared to the figures
obtained with weekly or monthly time series. Even if, on the basis of empirical data, a precise determination of the
tails remains hard, finding an accurate value for the exponent is an important issue. More precisely, the finite fourth
normalized cumulant requires µ > 4, otherwise the kurtosis is ill-defined and may lead to tricky conclusions.
The literature provides several methods for the estimation of the tail exponent. Many works resort to the Hill estimator,
which is the conditional maximum likelihood estimator for a pure power law distribution, and is based on the k
largest order statistics ([42]). The easy computation and the accuracy of this estimator, at least for some statistical
distributions, made it very famous. It is the one used in [47] in order to distinguish between the scaling properties
of stocks and commodities. In [43], the authors introduce another estimator, the so-called MS estimator ([44]) and
compare its accuracy with the previous one. They show that the tail exponent of certain markets strongly depends on
the estimation threshold retained and that close to the limit of the stable Lévy regime, the estimator is not reliable. It
is thus important to retain a method which is not dependent of any threshold.
In our study, we retained the procedure described in [45] which, first does not require any threshold and second, uses
maximum-likelihood fitting methods with goodness-of-fit tests. The latter are based on the Kolmogorov Smirnov
statistic and on likelihood ratios. Finally, in order to obtain the most accurate values for the tail exponent and standard
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errors, we combined their method with bootstraped samples.
In what follows, we first present the results obtained for each market. We then propose a more general analysis, based
on averaged tail exponents.

5.1. Overview of the results for each market
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Figure 6: Tail exponent term structures. Upper panel: Eurodollar; Lower panel: Light crude oil. From the left to the right: Positive tail; Negative
tail; Absolute returns. The dashed line corresponds to the limit of the Lévy stable regime. The abscissae are in log scale.

The study of the term structures of the tail exponents for the 13 futures contracts under examination leads us to
several results, as illustrated by Figures 6 and 7. The latter provide representative examples of the positive, negative
and absolute exponent term structures obtained for each category of futures contracts, that is to say Eurodollar, Light
crude oil, Wheat and Gold.
First, most of the returns do not belong to the Lévy stable domain, whatever the maturity is considered. Thus, in their
majority, the distributions of the returns cannot be described, neither by stochastic processes with stable laws and
infinite variance, nor by brownian motions. The exceptions are the European Natural gas and the first maturities of
the three interest rates contracts. Due to monetary policy actions, governments indeed often maintain the same level
of interest rates during several months. Over reaction of the traders to sudden changes in the level of politically driven
interest rates might explain the greater probability of high extreme events.
Second result, the distribution of absolute returns exhibits an increasing term structure of the tail exponent for Light
crude oil, Gold, Heating oil and the three interest rates. We observed the opposite behavior for Wheat and the two
natural gases. No specific tendency can be found on the agricultural products.
Third result, some of the futures contracts, that is to say Light crude oil and Gold, are characterized by a strong asym-
metry between the positive and negative parts of the distribution (Fig. 6(d,e) and Fig. 7(d,e)). Oil is distinguishable
as it exhibits relatively few rare events on its right tail. The same phenomenon is typical of the left tail of the Gold
contract. As a consequence, these two contracts exhibit relative high errors and exponents’ level on these sides of
their distribution. As mentioned in 4.3, this might be attributed to the level of contango and / or backwardation of
these markets.
Lastly, the interest rates contracts share common patterns: the exponents of the short-term maturities belong to the
Lévy stable domain. Moreover, µ increases slowly with the maturity, thus indicating a damping of extreme price
movements, and reaches a plateau at long time scale. The same kind of conclusion has been reached by the authors
in [18] on the Eurodollar. In their study, they compare the probability distribution with the general class of Lévy,

9



Khinchtine stable distributions. They observe that from 1990 to 1996 the tail region is in the Lévy stable domain.
They also expect a faster decrease for larger fluctuations as would be the case for truncated Lévy flights [46]. We
thus find, on a latter period (1998 − 2010), similar values for the short-time part of the prices curve as well as a faster
vanishing for higher maturities. Moreover, we generalize these results on other interest rates.
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Figure 7: Tail exponent term structures. Upper panel: Wheat; Lower panel: Gold. From the left to the right : Positive tail; Negative tail; Absolute
returns.

5.2. Generalized exponents term structure
In this section, we extend in the maturity dimension the results of [47]. The authors indeed compare the scaling

properties of spot and futures prices of commodities. They however do not precise what kind of futures prices they
use: our guess is that they retain the nearest available maturity. They compute average exponents for all markets under
scrutiny and find µ̄spot ∼ 2.3 and µ̄futures ∼ 3.2. As far as our study is concerned, as we aim to give a deeper insight of
the maturity dimension, we calculate, for each maturity M, the average, positive, negative and absolute tail exponents:

µ̄ (M) =
1

N (M)

N(M)
∑

i=1
µi (M) , (6)

where µ̄ (M) can be estimated for absolute, positive, negative tails and N (M) is the number of futures contracts having
maturity M.
We thus test whether the inverse cubic law can be observed in the maturity dimension. If this is true, this would
suggest the presence of identical trading behavior for assets traded on the spot and derivative markets.
We present the results on the Figure 8. The average positive and negative exponents’ curves roughly collapse from
the first to the thirty-six months with a minimum close to the Lévy stable region. Then they separate from each other
and the values of µ̄ become greater for left tails. The degree of asymmetry between the two tails is measured by the
distance |µ>0 −µ<0| (inset of Figure 8(a). We observe a segmentation along the term structure into four parts: from the
first to the eighteenth month, the figures are close to 0.5; then, until the 35 months’ maturity, they decrease around 0.2.
From 36 to 75 months they reach a plateau, close to 0.4. Finally, the curve goes down and stabilizes around 0.1. Thus
the presence of preferred habitats, usually detected in prices (4.1,[28], [48]), can also be observed in the asymmetry
of extreme events.
We finally studied the behavior of absolute returns, as displayed by Figure 8(b) and observe two regimes of values. A
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first plateau is located around µ̄abs ∼ 3.15 and is surrounded by the 1st and 18th months. A second one starts at 19
months and ends at the latest maturities, for a value close to µ̄abs ∼ 2.53. In [47], the authors find a futures power law
decay with an exponent close to 3.2, which is in good agreement with our values, for the first part of the curve. As the
authors did not give any information about the maturity of the futures prices used, we cannot precisely localize their
value on the first plateau.
The existence of these two regimes for the tail exponent reminds of a phase diagram. This result suggests that in the
idea of a thermodynamic limit, with an infinite number of markets, the curve µ̄abs (M) could be defined as follows:

µ̄abs (M) ∼
{

3 if M < Mt,

2.5 if M > Mt,
(7)

with Mt = 18 months. This transition value Mt marks off two regions of extreme events. The first is close to the spot
price and the shock regime is probably mostly originated from the physical market and inventories. The second region
is characterized by another type of shocks which might be due to a lack of liquidity or financial activity. In such a
perspective, we hypothesize that the maturity Mt defines a time horizon delimiting two regimes of risk.
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Figure 8: Aggregate tail exponents term structures; (a): Positive and negative aggregate tail exponents; Inset: distance between the positive and
negative aggregate tail exponents; (b) Absolute returns

6. Conclusions

In this article we present novel empirical findings of derivatives markets by including the expiration dates as a vari-
able. We examine and compare the behavior of the term structure of futures prices’ returns of commodity and financial
derivatives. Compared to financial assets, commodities have received less attention; furthermore, the temporal aspect
of the term structure has often been discarded. Whereas the first and second moments of the distribution exhibit a bell
curve for interest rates, with a maximum located at a maturity indicating a limit of the monetary policy influence, the
commodities can be distinguished by a decreasing pattern with the maturity. This phenomenon is usually referred to
as the Samuelson effect and can be characterized by a new exponent for most of the commodities under examination.
Lastly, the analysis of the skewness and kurtosis shows that derivative markets tend to exhibit an asymmetrical dis-
tribution, skewed to the left (right) when they are in contango (backwardation). All these results lead us to conclude
that the term structure of the first fourth moments of the distributions provide statiscal signatures for commodities and
interest rates.
Finally, the study of rare events shows an new feature of derivative markets. The value of the average tail exponent
defines a phase diagram with two phases separated at the maturity of transition Mt = 18 months, reflecting a segmen-
tation in the maturity dimension two specific regime of risk and a fatter tail above Mt.
Further developments in the modeling of commodities prices and interest rates should take into account these new
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empirical facts and will have to highlight the origin of microscopic and/or macroscopic forces responsible for such
statistical properties.
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