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Abstract

This paper presents recent results from Mean Field Game theory underlying the intro-
duction of common noise that imposes to incorporate the distribution of the agents as a
state variable. Starting from the usual mean field games equations introduced in [11, 12, 13]
and adapting them to games on graphs, we introduce a partial differential equation, often
referred to as the Master equation (see [14]), from which the MFG equations can be deduced.
Then, this Master equation can be reinterpreted using a global control problem inducing the
same behaviors as in the non-cooperative initial mean field game.

Introduction

Mean field games have been introduced in 2006 by J.-M. Lasry and P.-L. Lions [11, 12, 13]
to generalize stochastic differential games to games involving a continuum of players.
Since 2006, many applications of mean field games have been proposed, particularly in eco-
nomics (see for instance [6], [9], or [10]) and an important effort has been made to solve the
partial differential equations associated to mean field games when both time and the state
space are continuous (see [1], [2], [8], [10], etc).
In this paper, we consider a mean field game on a complex discrete state space that is rep-
resented by a graph and we explain the discrete counterpart of the MFG equations and of
the Master equation formally introduced in [14]. This Master equation, or in our discrete
case the Master equations, “contains” the MFG equations and allows for the introduction
of random noise (although this question is not tackled here). In addition to these Master
equations that can be exposed in a simple way in this discrete context without relying on
differential calculus in a space of probability measures, we provide an interpretation of them
as the equations solved by the partial differentials of a function that solves a single Hamilton-
Jacobi equation in high dimension associated to a global optimization problem on the graph.

In the first section, we introduce the setting of our mean field game on a graph and
define what a Nash-MFG equilibrium is. Then, in section 2, we define the MFG equations
in the case of a graph, along with the Master equations, and we show how to deduce a
Nash-MFG equilibrium from smooth solutions of these equations. In section 3 we define
a global optimization problem on the graph and show how the solution of the associated
Hamilton-Jacobi equation is related to the Master equations and eventually to the initial
mean field game.
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75013 Paris, France. olivier.gueant@ann.jussieu.fr

1



1 Mean field games in a graph

We consider a directed graph G whose nodes are indexed by integers from 1 to N . For each
node i ∈ N = {1, . . . , N} we introduce V(i) ⊂ N \{i} the set of nodes j for which a directed
edge exists from i to j. The cardinal of this set is denoted di and called the out-degree of
the node i. Reciprocally, we denote V−1(i) ⊂ N \{i} the set of nodes j for which a directed
edge exists from j to i.
This graph G is going to be the state space of our mean field game and we suppose that
there is a continuum of anonymous and identical players of size 1, playing a game on the
graph as described in the next paragraphs1.

Each player’s position is represented by a continuous-time Markov chain (Xt)t with val-
ues in G and instantaneous transition probabilities at time t described by a collection of
functions λt(i, ·) : V(i) → R+ (for each node i ∈ N ).
Each player is able to decide on the values of the transition probabilities at time t and pays
an instantaneous cost2 L(i, (λi,j)j∈V(i)) to set the value of λ(i, j) to λi,j.

The assumptions made on the continuous functions L(i, ·) are the following.
First, we assume asymptotic super-linearity for each i ∈ N ;

∀i ∈ N , lim
λ∈R

di
+ ,|λ|→+∞

L(i, λ)

|λ|
= +∞

Then, we define the Hamiltonians H(i, ·):

∀i ∈ N , p ∈ R
di 7→ H(i, p) = sup

λ∈R
di
+

λ · p− L(i, λ)

and we assume that for each i ∈ N , H(i, ·) is a C1 function with3

∇H(i, p) = argmax
λ∈R

di
+

λ · p− L(i, λ)

This assumption is satisfied as soon as for each i ∈ N , L(i, ·) is a C2 strongly convex function
or if L(i, λ) =

∑

j∈V(i)C(i, j, λi,j) with each of the functions C(i, j, ·) a strictly convex C2

function.

Now, to define the mean field game, let us introduce a domain Ω ⊂ R
N containing

PN = {(x1, . . . , xN ) ∈ [0, 1]n,
∑N

i=1 xi = 1} and two functions f and g defined4 on N × Ω
such that ∀i ∈ N , f(i, ·) and g(i, ·) are continuous on Ω.

Now, let us also define the set A of admissible controls. We are only considering marko-
vian controls and we define:

A =
{

(λt(i, j))t∈[0,T ],i∈N ,j∈V(i) deterministic |∀i ∈ N ,∀j ∈ V(i), t 7→ λt(i, j) ∈ L∞(0, T )
}

Now, for a given admissible control5 λ ∈ A and a given function m : t ∈ [0, T ] 7→
(m(t, 1), . . . ,m(t,N)) ∈ PN we define the payoff function Jm : [0, T ]×N ×A → R by:

Jm(t, i, λ) = E

[∫ T

t

(−L(Xs, λs(Xs, ·)) + f (Xs,m(s)))) ds+ g (XT ,m(T ))

]

1While writing this article, we learnt during a conference organized in Rome on Mean Field Games that results
on the limit of continuous time and finite state space M -player-games as M → +∞ had been obtained by Diogo
Gomes, justifying our direct passage to a continuum of players

2There is no additional difficulty when a time dependency is added.
3The argmax being well defined because of the asymptotic super-linearity of L.
4If one adds a time dependency to f , the following results can be adapted straightforwardly.
5We call λ a control although it is an abuse of terminology since the controls consist in the values of λ.
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for (Xs)s∈[t,T ] a Markov chain on G, starting from i at time t, with instantaneous tran-
sition probabilities given by (λs)s∈[t,T ].

From this we can adapt the definition of a (symmetric) Nash-MFG equilibrium to our
context:

Definition 1 (Nash-MFG symmetric equilibrium). A differentiable function m : t ∈ [0, T ] 7→
(m(t, 1), . . . ,m(t,N)) ∈ PN is said to be a Nash-MFG equilibrium, if there exists an admis-
sible control λ ∈ A such that:

∀λ̃ ∈ A,∀i ∈ N , Jm(0, i, λ) ≥ Jm(0, i, λ̃)

and

∀i ∈ N ,
d

dt
m(t, i) =

∑

j∈V−1(i)

λt(j, i)m(t, j) −
∑

j∈V(i)

λt(i, j)m(t, i)

In that case, λ is called an optimal control.

In this definition, m stands implicitly for the distribution of the players across the dif-
ferent nodes.

As for all mean field games, the problem is a fixed point problem since, starting from
a (guessed) trajectory m, the control problem in Definition 1 induces trajectories for the
players and to obtain a Nash-MFG equilibrium these individual trajectories must generate
the right macroscopic trajectory m for the distribution of the players in G.

In the next section we are going to write the MFG equations associated to our problem,
which we call the decentralized problem as it involves all the players, and see that these
equations can be extracted from a set of equations called the Master equations, as introduced
by J.-M. Lasry and P.-L. Lions and presented in [14] in a different framework.

2 MFG equations and the Master equation

As for any control problem we can associate, when m is fixed, a Hamilton-Jacobi equation
to the above control problem. More exactly, since there are N states, we need to write
down N Hamilton-Jacobi equations, one for each state. However, these backward equations
need to be coupled with a system of forward transport equations that describe the resulting
evolution of the distribution of players.

The graph counterpart of the two partial differential equations of classical mean field
games (see [11, 12, 13]) are the following:

Definition 2 (The G-MFG equations). The G-MFG equations consist in a system of 2N
equations, the unknown being t ∈ [0, T ] 7→ (u(t, 1), . . . , u(t,N),m(t, 1), . . . ,m(t,N)).

The first half of these equations are the Hamilton-Jacobi equations associated to the above
problem and consist in the following system:

∀i ∈ N ,
d

dt
u(t, i) +H

(

i, (u(t, j) − u(t, i))j∈V(i)

)

+ f(i,m(t, 1), . . . ,m(t,N)) = 0

with u(T, i) = g(i,m(t, 1), . . . ,m(t,N)).
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The second half of these equations are forward transport equations:

∀i ∈ N ,
d

dt
m(t, i) =

∑

j∈V−1(i)

∂H(j, ·)

∂pi

(

(u(t, k) − u(t, j))k∈V(j)

)

m(t, j)

−
∑

j∈V(i)

∂H(i, ·)

∂pj

(

(u(t, k) − u(t, i))k∈V(i)

)

m(t, i)

with (m(0, 1), . . . ,m(0, N)) = m0 ∈ PN given.

Now, we enounce a result saying that a C1 solution of the G-MFG equations provides a
Nash-MFG equilibrium and an optimal control:

Proposition 1 (The G-MFG equations as a sufficient condition). Let m0 ∈ PN and let
us consider a C1 solution (u(t, 1), . . . , u(t,N),m(t, 1), . . . ,m(t,N)) of the G-MFG equations
with (m(0, 1), . . . ,m(0, N)) = m0.

Then t 7→ m(t) = (m(t, 1), . . . ,m(t,N)) is a Nash-MFG equilibrium and the relations

λt(i, j) =
∂H(i,·)
∂pj

(

(u(t, k) − u(t, i))k∈V(i)

)

define an optimal control.

Proof:

Let us consider an admissible control λ̃ ∈ A. Let us then consider an initial position

i ∈ N and a Markov chain (X0,i,λ̃
t )t starting in i at time 0, with instantaneous transition

probabilities given by λ̃.
Since the values taken by λ are bounded, there is almost surely a finite number Q of moves
in the time interval [0, T ) and we can write (almost surely):

u
(

T,X
0,i,λ̃
T−

)

= u(0, i)+





Q
∑

q=1

u
(

tq,X
0,i,λ̃
tq

)

− u
(

tq−1,X
0,i,λ̃
tq−1

)



+u
(

T,X
0,i,λ̃
T−

)

−u
(

tQ,X
0,i,λ̃
tQ

)

where t0 = 0 and the other tis are the time of jumps.

Then:

u
(

T,X
0,i,λ̃
T−

)

= u(0, i) +

∫ T

0

∂u

∂t
(t,Xt−)dt+

Q
∑

q=1

u
(

tq,X
0,i,λ̃
tq

)

− u
(

tq,X
0,i,λ̃
tq−

)

= u(0, i) +

∫ T

0

∂u

∂t
(t,Xt−)dt+

∫ T

0

∑

j∈V(Xt−)

(

u (t, j) − u
(

t,X
0,i,λ̃
t−

))

λ̃t(Xt−, j)dt +MT

where (Mt)t is a local martingale starting from 0 that happens to be a martingale since u is
bounded.

Hence:

E

[

g(X0,i,λ̃
T ,m(T ))

]

= E

[

g(X0,i,λ̃
T− ,m(T−))

]

= u(0, i)

+E





∫ T

0





∂u

∂t
(t,Xt−) +

∑

j∈V(Xt−)

(

u (t, j) − u
(

t,X
0,i,λ̃
t−

))

λ̃t(Xt−, j)



 dt





=⇒ E

[

g(X0,i,λ̃
T ,m(T )) −

∫ T

0
L(Xt−, λt(Xt−, ·))dt

]

= u(0, i)
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+E





∫ T

0





∂u

∂t
(t,Xt−)− L(Xt−, λt(Xt−, ·)) +

∑

j∈V(Xt−)

(

u (t, j)− u
(

t,X
0,i,λ̃
t−

))

λ̃t(Xt−, j)



 dt





By definition of u, we have that:

E

[

g(X0,i,λ̃
T ,m(T )) +

∫ T

0
(−L(Xt−, λt(Xt−, ·))) dt

]

≤ u(0, i) − E

[∫ T

0
f(X0,i,λ̃

t− ,m(t−))dt

]

=⇒ E

[∫ T

0

(

−L(Xt, λt(Xt, ·)) + f(X0,i,λ̃
t ,m(t))

)

dt+ g(X0,i,λ̃
T ,m(T ))

]

≤ u(0, i)

with equality when λ̃ is taken to be the control λ as described in the statement of the
result (because of our assumption on the hamiltonians), this control being indeed admissible
since the function u is bounded and since each H(i, ·) is C1.

Hence:
Jm(0, i, λ̃) ≤ u(0, i) = Jm(0, i, λ)

and this proves the result.

Existence and uniqueness of solutions to the G-MFG equations are now tackled. We first
start with existence and our proof is based on a Schauder fixed-point argument and a priori
estimates to obtain compactness. Then we will present a criterion to ensure uniqueness of
m for C1 solutions.

For the existence result, we first start with a Lemma stating that, for a fixed m, the N

Hamilton-Jacobi equations amongst the G-MFG equations obey a maximum principle:

Lemma 1 (Maximum principle). Let m : [0, T ] → PN be a continuous function. Let
u : t ∈ [0, T ] 7→ (u(t, 1), . . . , u(t,N)) be a C1 function that verifies:

∀i ∈ N , −
d

dt
u(t, i)−H

(

i, (u(t, j) − u(t, i))j∈V(i)

)

− f(i,m(t, 1), . . . ,m(t,N)) ≤ 0

with u(T, i) ≤ g(i,m(t, 1), . . . ,m(t,N)).
Let v : t ∈ [0, T ] 7→ (v(t, 1), . . . , v(t,N)) be a C1 function that verifies:

∀i ∈ N , −
d

dt
v(t, i) −H

(

i, (v(t, j) − v(t, i))j∈V(i)

)

− f(i,m(t, 1), . . . ,m(t,N)) ≥ 0

with v(T, i) ≥ g(i,m(t, 1), . . . ,m(t,N)).
Then, ∀i ∈ N ,∀t ∈ [0, T ], v(t, i) ≥ u(t, i).

Proof:

Let us consider for a given ǫ > 0, a point (t∗, i∗) ∈ [0, T ]×N such that

u(t∗, i∗)− v(t∗, i∗)− ǫ(T − t∗) = max
(t,i)∈[0,T ]×N

u(t, i) − v(t, i) − ǫ(T − t)

If t ∈ [0, T ), then d
dt
(u(t∗, i∗)− v(t∗, i∗)− ǫ(T − t∗)) ≤ 0. Also, by definition of (t∗, i∗),

∀j ∈ V(i∗), u(t∗, i∗)− v(t∗, i∗) ≥ u(t∗, j) − v(t∗, j) and hence, by definition of H(i∗, ·):

H
(

i∗, (v(t∗, j) − v(t∗, i∗))j∈V(i∗)

)

≥ H
(

i∗, (u(t∗, j)− u(t∗, i∗))j∈V(i∗)

)

Combining these inequalities we get:

−
d

dt
u(t∗, i∗)−H

(

i∗, (u(t∗, j)− u(t∗, i∗))j∈V(i∗)

)

≥ −
d

dt
v(t∗, i∗)−H

(

i∗, (v(t∗, j) − v(t∗, i∗))j∈V(i∗)

)

+ǫ
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But this is in contradiction with the hypotheses on u and v.

Hence t∗ = T and max(t,i)∈[0,T ]×N u(t, i)−v(t, i)−ǫ(T −t) ≤ 0 because of the assumptions
on u(T, i) and v(T, i).

This being true for any ǫ > 0, we have that max(t,i)∈[0,T ]×N u(t, i)− v(t, i) ≤ 0.

This lemma allows to provide a bound to any solution u of the N Hamilton-Jacobi
equations and this bound is then used to obtain compactness in order to apply Schauder’s
fixed point theorem.

Proposition 2 (Existence of a solution to the G-MFG equations). Let m0 ∈ PN . Under the
assumptions made in section 1, there exists a C1 solution (u,m) of the G-MFG equations
such that m(0) = m0.

Proof:

Let m : [0, T ] → PN be a continuous function.

Let then consider the solution u : t ∈ [0, T ] 7→ (u1(t), . . . , uN (t)) to the Hamilton-Jacobi
equations:

∀i ∈ N ,
d

dt
u(t, i) +H

(

i, (u(t, j) − u(t, i))j∈V(i)

)

+ f(i,m(t, 1), . . . ,m(t,N)) = 0

with u(T, i) = g(i,m(t, 1), . . . ,m(t,N)).

This function u is a well defined C1 function with the following bound coming from the
above lemma:

sup
i∈N

‖u(·, i)‖∞ ≤ sup
i∈N

‖g(i, ·)‖∞ +

(

sup
i∈N

‖f(i, ·)‖∞ + sup
i∈N

|H(i, 0)|

)

T

Using this bound and the fact that the functions H(i, ·) are assumed to be C1, we can
define a function m̃ : [0, T ] → PN by:

∀i ∈ N ,
d

dt
m̃(t, i) =

∑

j∈V−1(i)

∂H(j, ·)

∂pi

(

(u(t, k) − u(t, j))k∈V(j)

)

m̃(t, j)

−
∑

j∈V(i)

∂H(i, ·)

∂pj

(

(u(t, k) − u(t, i))k∈V(i)

)

m̃(t, i)

with (m̃(0, 1), . . . , m̃(0, N)) = m0 ∈ PN .

This function m̃ is bounded and dm̃
dt

is also bounded, the bounds depending only on the
functions f(i, ·), g(i, ·) and H(i, ·), i ∈ N .

As a consequence, if we define Θ : m ∈ C([0, T ],PN ) 7→ m̃ ∈ C([0, T ],PN ), Θ is a contin-
uous function (from classical ODEs theory) with Θ(C([0, T ],PN )) a relatively compact set
(because of Ascoli’s Theorem and the uniform Lipschitz property we just obtained).

Hence, by Schauder’s fixed point theorem, there exists a fixed point m to Θ. If we then
consider u associated to m by the Hamilton-Jacobi equations as above, (u,m) is a C1 solu-
tion to the G-MFG equations.

Coming now to uniqueness, we deduce from the proof of uniqueness introduced in [11,
12, 13], a criterion to ensure uniqueness of m for C1 solutions of the G-MFG equations:
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Proposition 3 (m-Uniqueness for the G-MFG equations). Assume that f and g are such
that:

∀(m1,m2) ∈ PN×PN ,

N
∑

i=1

(f(i,m1
1, . . . ,m

1
N )−f(i,m2

1, . . . ,m
2
N ))(m1

i−m2
i ) ≥ 0 =⇒ m1 = m2

and

∀(m1,m2) ∈ PN×PN ,

N
∑

i=1

(g(i,m1
1, . . . ,m

1
N )−g(i,m2

1, . . . ,m
2
N ))(m1

i−m2
i ) ≥ 0 =⇒ m1 = m2

Then, if (u,m) and (ũ, m̃) are two C1 solutions of the G-MFG equations, we have m = m̃.

Proof:

The proof of this result is a straightforward adaptation of the classical proof of unique-
ness for continuous MFG equations.

It consists in computing the value of I =
∫ T

0

∑N
i=1

d
dt
((u(t, i) − ũ(t, i))(m(t, i) − m̃(t, i))) dt

in two different ways.

We first know directly that

I =

N
∑

i=1

(g(i,m(T, 1), . . . ,m(T,N)) − g(i, m̃(T, 1), . . . , m̃(T,N)))(m(T, i) − m̃(T, i))

Now, differentiating the product we get, after reordering the terms that:

I = −

∫ T

0

N
∑

i=1

(f(i,m(t, 1), . . . ,m(t,N)) − f(i, m̃(t, 1), . . . , m̃(t,N)))(m(t, i) − m̃(t, i))dt

+

∫ T

0

N
∑

i=1

m(t, i)

[

H(i, (ũ(t, k) − ũ(t, i))k∈V(i))−H(i, (u(t, k) − u(t, i))k∈V(i))

−
∑

j∈V(i)

((u(t, i) − ũ(t, i)) − (u(t, j) − ũ(t, j)))
∂H(i, ·)

∂pj

(

(u(t, k) − u(t, i))k∈V(i)

)

]

dt

+

∫ T

0

N
∑

i=1

m̃(t, i)

[

H(i, (u(t, k) − u(t, i))k∈V(i))−H(i, (ũ(t, k)− ũ(t, i))k∈V(i))

−
∑

j∈V(i)

((ũ(t, i)− u(t, i)) − (ũ(t, j) − u(t, j)))
∂H(i, ·)

∂pj

(

(ũ(t, k)− ũ(t, i))k∈V(i)

)

]

dt

Now, using the convexity of the hamiltonian functions, we know that:

∫ T

0

N
∑

i=1

(f(i,m(t, 1), . . . ,m(t,N)) − f(i, m̃(t, 1), . . . , m̃(t,N)))(m(t, i) − m̃(t, i))dt

+

N
∑

i=1

(g(i,m(T, 1), . . . ,m(T,N)) − g(i, m̃(T, 1), . . . , m̃(T,N)))(m(T, i) − m̃(T, i)) ≥ 0

Hence, using the hypotheses on f and g, m = m̃.
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A simple example of functions f and g satisfying the above criterion consists in taking
for f(i, ·) and g(i, ·) functions of mi only, strictly decreasing in mi.

Now we define the graph counterpart of the Master equation proposed by J.-M. Lasry
and P.-L. Lions and presented in [14]:

Definition 3 (The G-Master equations). The G-Master equations consist in N equations, the
unknown being (t,m1, . . . ,mN ) ∈ [0, T ]× Ω 7→ (U1(t,m1, . . . ,mN ), . . . , UN (t,m1, . . . ,mN )).

∀i ∈ N ,
∂Ui

∂t
(t,m1, . . . ,mN ) +H

(

i, (Uj(t,m1, . . . ,mN )− Ui(t,m1, . . . ,mN ))j∈V(i)

)

+

N
∑

l=1

∂Ui

∂ml

(t,m1, . . . ,mN )





∑

j∈V−1(l)

∂H(j, ·)

∂pl

(

(Uk(t,m1, . . . ,mN )− Uj(t,m1, . . . ,mN ))k∈V(j)

)

mj

−
∑

j∈V(l)

∂H(l, ·)

∂pj

(

(Uk(t,m1, . . . ,mN )− Ul(t,m1, . . . ,mN ))k∈V(l)

)

ml



+f(i,m1, . . . ,mN ) = 0

with Ui(T,m1, . . . ,mN ) = g(i,m1, . . . ,mN ).

This equation is the Hamilton-Jacobi equation associated to the decentralized problem
when we consider that the state variable is not only the current position but also the repar-
tition of the players on G. In particular, when there is a common noise affecting for instance
the functions f and g, one cannot write the G-MFG equations and one has to rely instead
on the G-Master equations (see [14]).

To prove that these G-Master equations are indeed more general than the G-MFG equa-
tions we enounce the following proposition:

Proposition 4 (From G-Master equations to G-MFG equations). Let us consider a C1

function (t,m1, . . . ,mN ) ∈ [0, T ] × Ω 7→ (U1(t,m1, . . . ,mN ), . . . , UN (t,m1, . . . ,mN )) ver-
ifying the G-Master equations. Let us then consider a C1 function m : t ∈ [0, T ] 7→
(m(t, 1), . . . ,m(t,N)) verifying:

∀i ∈ N ,
d

dt
m(t, i) =

∑

j∈V−1(i)

∂H(j, ·)

∂pi

(

(Uk(t,m(t, 1), . . . ,m(t,N)) − Uj(t,m(t, 1), . . . ,m(t,N)))k∈V(j)

)

m(t, j)

−
∑

j∈V(i)

∂H(i, ·)

∂pj

(

(Uk(t,m(t, 1), . . . ,m(t,N)) − Ui(t,m(t, 1), . . . ,m(t,N)))k∈V(i)

)

m(t, i)

with (m(0, 1), . . . ,m(0, N)) = m0 ∈ PN .
If we define

∀i ∈ N , u(t, i) = Ui(t,m(t, 1), . . . ,m(t,N))

then t ∈ [0, T ] 7→ (u(t, 1), . . . , u(t,N),m(t, 1), . . . ,m(t,N)) is a solution of the G-MFG equa-
tions with the initial condition m0.

Proof:

Differentiating u(t, i) = Ui(t,m(t, 1), . . . ,m(t,N)) with respect to t, one obtain the ith

Hamilton-Jacobi equation that defines the G-MFG equations. The result is then straight-
forward.
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3 Potential games and reduction to a planning prob-

lem

In this section, we provide a way to deduce the G-Master equations that consist in N equa-
tions from a single equation when the functions f and g verify the hypotheses of potential
games6. We say that the above game is a potential game when there exist two C1 functions
F : (m1, . . . ,mN ) ∈ Ω 7→ F (m1, . . . ,mN ) and G : (m1, . . . ,mN ) ∈ Ω 7→ G(m1, . . . ,mN ) such
that ∀i ∈ N , ∂F

∂mi
= f(i, ·) and ∂G

∂mi
= g(i, ·) in Ω.

To that purpose let us introduce a global optimization problem that we phrase a plan-
ning problem7. This optimization problem consists in optimizing directly, with a macroscopic
viewpoint, the different flows of agents (the preceding players being now controlled by a sin-
gle agent, often referred to as a planner) between the nodes of the graph.

We introduce for t ∈ [0, T ], mt ∈ PN and a given admissible control (function) λ ∈ A,
the payoff function

J (t,mt, λ) =

∫ T

t

(

F (m(s))−
N
∑

i=1

L(i, (λs(i, j))j∈V(i))m(s, i)

)

ds+G(m(T ))

where ∀i ∈ N ,m(t, i) = mt
i and

∀i ∈ N ,∀s ∈ [t, T ],
d

ds
m(s, i) =

∑

j∈V−1(i)

λs(j, i)m(s, j) −
∑

j∈V(i)

λs(i, j)m(s, i)

The optimization problem we consider is, for a given m0 ∈ PN :

sup
λ∈A

J (0,m0, λ)

Noteworthy, and contrary to the first optimization problem that was a stochastic control
problem, this new problem is a deterministic control problem.

We define the Hamilton-Jacobi equation associated to this deterministic control problem:

Definition 4 (The G-planning equation). The G-planning equation consists in a single par-
tial differential equation, the unknown being (t,m) ∈ [0, T ]× Ω 7→ Φ(t,m1, . . . ,mN ):

∂Φ

∂t
(t,m1, . . . ,mN ) +H(m1, . . . ,mN ,∇Φ) + F (m1, . . . ,mN ) = 0

with the terminal conditions Φ(T,m1, . . . ,mN ) = G(m1, . . . ,mN ), where the hamiltonian is
given by:

H(m1, . . . ,mN , p) = sup
(λi,j)i∈N ,j∈V(i)

N
∑

i=1









∑

j∈V−1(i)

λj,imj −
∑

j∈V(i)

λi,jmi



 pi − L(i, (λi,j)j∈V(i))mi





Our goal is to link this planning problem to the decentralized problem. The first step is
to write the hamiltonian H in another way:

6This is for instance the case if ∀i ∈ N , f(i, ·) and g(i, ·) only depend on mi.
7The term “planning problem” must be understood here as the problem of a planner controlling the whole

population of players. The planing problem studied in [1] is of a different nature.
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Lemma 2.

H(m1, . . . ,mN , p) =
N
∑

i=1

miH
(

i, (pj − pi)j∈V(i)

)

Proof:

Reordering the terms we can write H(m1, . . . ,mN , p) as:

N
∑

i=1

mi sup
(λi,j)j∈V(i)





∑

j∈V(i)

λi,j(pj − pi)− L(i, (λi,j)j∈V(i))





Then using the definition of the hamiltonians in the decentralized problem, we get the re-
sult.

Proposition 5. Let us consider a C1 function Φ solution of the G-planning equation. Then,
Φ restricted to [0, T ]× PN is the value function of the above planning problem, i.e.:

∀(t,mt) ∈ [0, T ]× PN ,Φ(t,mt) = sup
λ∈A

J (t,mt, λ)

Moreover, if we define ∀i ∈ N ,m(t, i) = mt
i and

∀i ∈ N ,∀s ∈ [t, T ],
d

ds
m(s, i) =

∑

j∈V−1(i)

λs(j, i)m(s, j) −
∑

j∈V(i)

λs(i, j)m(s, i)

with

λs(i, j) =
∂H(i, ·)

∂pj

(

(

∂Φ

∂mk

(s,m(s, 1), . . . ,m(s,N)) −
∂Φ

∂mi
(s,m(s, 1), . . . ,m(s,N))

)

k∈V(i)

)

then λ is an optimal control for the planning problem.

Proof:

Let us consider an admissible control λ̃ ∈ A and a repartition mt ∈ PN .
Then, let us define:

∀i ∈ N ,∀s ∈ [t, T ],
d

ds
mt,mt,λ̃(s, i) =

∑

j∈V−1(i)

λ̃s(j, i)m
t,mt ,λ̃(s, j) −

∑

j∈V(i)

λ̃s(i, j)m
t,mt ,λ̃(s, i)

with m(t, i) = mt
i.

We can write

Φ
(

T,mt,mt,λ̃(T )
)

− Φ
(

t,mt
)

=

∫ T

t

∂Φ

∂s
(s,mt,mt,λ̃(s))ds

+
N
∑

i=1

∂Φ

∂mi

(s,mt,mt,λ̃(s))





∑

j∈V−1(i)

λ̃s(j, i)m
t,mt ,λ̃(s, j) −

∑

j∈V(i)

λ̃s(i, j)m
t,mt ,λ̃(s, i)





Hence, using the definition of Φ:

G
(

mt,mt,λ̃(T )
)

−

∫ T

t

N
∑

i=1

L(i, (λ̃s(i, j))j∈V(i))m
t,mt,λ̃(s, i)ds

≤ Φ
(

t,mt
)

−

∫ T

t

F (mt,mt,λ̃(s))ds
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with equality when λ̃ is equal to λ as defined in the Proposition, thanks to the preceding
Lemma (this λ being admissible because of our hypotheses on the hamiltonians, because Φ
is C1 and because PN is compact).

As a consequence:
J (t,mt, λ̃) ≤ Φ(t,mt) = J (t,mt, λ)

and this proves the result.

Now, we are going to relate the function Φ to the G-Master equations and prove that a
solution to the planning problem can provide a solution to the decentralized problem, that
is the initial mean field game.

Proposition 6. Let us consider a C2 function8 Φ solution of the G-planning equation.
Define ∀i ∈ N , ∀t ∈ [0, T ], ∀m ∈ PN , Ui(t,m1, . . . ,mN ) = ∂Φ

∂mi
(t,m1, . . . ,mN ). Then,

∇Φ = U = (U1, . . . , UN ) verifies the G-Master equations.
Consequently, if we define ∀i ∈ N ,m(0, i) = m0

i for a given m0 ∈ PN and

∀i ∈ N ,∀s ∈ [t, T ],
d

ds
m(s, i) =

∑

j∈V−1(i)

λs(j, i)m(s, j) −
∑

j∈V(i)

λs(i, j)m(s, i)

with

λs(i, j) =
∂H(i, ·)

∂pj

(

(

∂Φ

∂mk

(s,m(s, 1), . . . ,m(s,N)) −
∂Φ

∂mi

(s,m(s, 1), . . . ,m(s,N))

)

k∈V(i)

)

then m is a Nash-MFG equilibrium and λ is an optimal control for the initial mean field
game (the decentralized problem).

Proof:

We need to prove the first assertion of the Proposition, then the other assertions are
consequences of Proposition 3.

Differentiating the G-planning equation with respect to mi, and using the above Lemma,
we know since Φ is C2 that:

∂Ui

∂t
+H

(

i, (Uj − Ui)j∈V(i)

)

+
N
∑

j=1

mj

∑

k∈V(j)

(

∂Uk

∂mi

−
∂Uj

∂mi

)

∂H(j, ·)

∂pk

(

(Ul − Uj)l∈V(j)

)

+f(i, ·) = 0

Now, using the fact that Φ is C2, we have ∀(i, j) ∈ N 2, ∂Ui

∂mj
=

∂Uj

∂mi
. Hence:

∂Ui

∂t
+H

(

i, (Uj − Ui)j∈V(i)

)

+
N
∑

j=1

mj

∑

k∈V(j)

(

∂Ui

∂mk

−
∂Ui

∂mj

)

∂H(j, ·)

∂pk

(

(Ul − Uj)l∈V(j)

)

+f(i, ·) = 0

and this is exactly the ith equation amongst the G-Master equations, after reordering the
terms. Hence, since the two terminal conditions are coherent, U = ∇Φ is indeed solution of
the G-Master equations.

8In reality, we do not need to be able to differentiate twice with respect to t
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Conclusion

In this paper, we presented a way to deduce a solution to the mean field games equations in
a graph from a smooth solution of a single equation Hamilton-Jacobi equation associated to
a global deterministic control problem on the whole graph. Moreover, and as described on
Figure 1 below, the Master equations – that “contain” MFG equations and have to be used
in the case of games with common noise – can be reinterpreted as the equations verified by
the partial differentials of solutions of this single Hamilton-Jacobi equation.

Planning problem

1 HJ equation

Differentiation Master equations

N equations

Characteristics MFG equations

2N equations

This paper also opens the door to the important challenge of numerical resolution of
Hamilton Jacobi equations in very high dimension either to solve the equations presented in
this paper or as a numerical approximation to solutions of the Hamilton-Jacobi equations
in infinite dimension presented in [14].
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Université Paris-Dauphine, 2009.
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pures et appliquées, 92(3):276–294, 2009.
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