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Abstract

This article discusses the discount rate to be used in projects that aimed at

preserving the environment. The model has two di¤erent goods, one is the usual

consumption good whose production may increase exponentially, the other is an

environmental good whose quality remains limited. The stylized world we describe

is fully determined by four parameters re�ecting basic preferences, "ecological" and

intergenerational concerns and feasibility constraints.

We de�ne an ecological discount rate and examine its connections with the usual

interest rate and the optimized growth rate. We discuss, in this simple world,

di¤erent forms of the precautionary principle and show that cost-bene�t analysis

should overweigh in a spectacular way the probabilities of the events associated with

bad environmental outcomes..

Introduction

Environmentalists have often dismissed the economists�approach to environmental prob-

lems, more especially when long term issues are at stake. On the one hand, what may

be called "ecological intuition" puts high priority on the long run preservation of the

environment. On the other hand, the cost-bene�t analysis promoted from economic rea-

soning calls for the use of discount rates that apparently lead to dismissal of the long
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run concerns. The climate issue is the most recent avatar of the clash between "eco-

logical intuition" and "economic reason": in sharp contrast with most environmentalists

and many climatologists�sensitivity, the computations based on Nordhaus (1993) suggest

lenient climate policies. And although Nordhaus has been cautious in warning against mis-

interpretations, some of his less cautious readers (Lomborg (2001)) claim that their �ght

against climate policies proceeds from "economic reason". The Stern review (2006) has

changed the tone of the debate signi�cantly. Although it is now gaining more acceptance,

it is clear that Stern�s views of "economic reason" and of the subsequent cost-bene�t

analysis may not be broadly accepted in the economic profession .

The present paper attempts to retackle the clear antagonism between the two sides

from a simple model, that has been recurrently used in the economists� debate, (see

Krautkramer (1987), Heal (1998)). The relevance of the simple model in the present

debate has been recently more systematically stressed by Guesnerie (2004), Hoel and

Sterner (2007) and Sterner and Persson (2007). The model assumes that there are two

goods at each period: the environment (a non-market good) and standard aggregate

consumption. The �rst one is supposed to be available in �nite quantity when the second

one is allowed to grow for ever. Indeed, modern optimism, based on the "economics" of

past growth performance, leads to the belief that consumption of the so-called private

goods may be multiplied without limit. In opposition, the "ecological" sensitivity stresses

the bounded level of the environmental amenities : sites, lands, seashores, species are

�nitely available on the planet.

We discuss the long run cost-bene�t analysis issues that arise within a model that

has indeed two goods, with the respective interpretations of aggregate consumption and

aggregate environmental quality that have just been introduced. As emphasized in Gues-

nerie (2004), in such a setting, cost-bene�t analysis has to stress, not only the standard

discount rates but also, the "ecological" discount rate, the evolution of which re�ects the

relative price of environment vis à vis the standard private good1.

The simple in�nite horizon world under scrutiny is entirely described by four parame-

ters. The �rst parameter describes how substitutable are the standard and environmental

goods in producing welfare. Opinions on the value of this parameter may di¤er between

a "moderate" environmentalist and a "radical" environmentalist. The second parameter

is the classical elasticity of marginal utility which re�ects the extent to which welfare

is subject to saturation, and which classically determines the intertemporal "resistance

to substitution" (the inverse of the inter-temporal elasticity of substitution). The third

1It is well known that in an n-commodity world, there are as many discount rates as there are goods
(see Malinvaud (1953) for a general appraisal of this question).
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parameter is a pure rate of time preference which, in this setting, measures the degree

of intergenerational altruism of the agents. The last parameter will be an interest rate

which, in the logic of a simple endogenous growth context (of the AK type), indicates to

which extent one can transfer consumption between periods and generations.

Within this model, the research agenda is clear: we have to understand how the para-

meters under consideration a¤ect the trade-o¤ between present and future consumption,

both for standard or "environmental" consumption. As argued above, key dimensions

of this trade-o¤ are captured through the "ecological" discount rates. Indeed, such rates

provides central ingredients to the cost-bene�t analysis of actions, taken at the margin

of the reference situation, aiming at preserving future environment. Our analysis then

focus on the cost-bene�t analysis of actions aiming at avoiding "irreversible damage to

the environment" : this brings us to assess the social value of what we call environmen-

tal perpetuities, and to exhibit bounds that spectacularly illustrate the di¤ernce between

such environmental perpetuities and standard �nancial perpetuities. This then leads us

to examine and assess the logic of the precautionary principle which focuses attention on

irreversible damage to the environment in case of "scienti�c uncertainty".

The paper proceeds as follows:

Part 1 of the paper presents the setting of the model and the role of the di¤erent

parameters. We present the basic concepts and introduce the "ecological discount rate"

independently of the growth model.

In Part 2, we introduce a two-good growth model à la Ramsey in which the environ-

mental good quality remains constant over time. Along with the derivation of asymptotic

results, the analysis allows us to exhibit the time pattern of both the optimal growth rates

of private consumption and the "ecological discount rates". We are able to characterize

yield curves in a way that allows us to single out a simple lower bound for the social loss

due to an "irreversible damage to the environment" or, to put in another way to help us

to price the so-called "environmental perpetuity".

Part 3 focuses on various forms of precautionary principles. We consider an irreversible

damage to the environment that will take place at some later date and the e¤ect of which

on (present and future) welfare is uncertain. We raise the question of the willingness to

pay of the present generation in order to avoid such a damage. Indeed, the analysis in Part

2 provides an answer to the same question, when there is no uncertainty on the welfare

e¤ect of the damage. When, as considered in this part, the damage has an uncertain

impact on welfare, we stress �rst a "weak precautionary principle": it is reminiscent, for

ecological discount rates, of Weitzman�s classical argument (2001) on long run standard

discount rates. Second, we exhibit a "strong precautionary principle", which we view as
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the most striking result of this paper. It tells us that the e¤ort of the present generation

should be based on a cost-bene�t analysis which overweighs in a spectacular way the

probabilities of the events associated with bad environmental outcomes.

The connections of the paper with the literature are as follows. Models with two-goods

include Heal (1998)2. The model of the paper is the one considered in Guesnerie (2004),

and the argument exploits the �ndings of this paper. It also uses some of the insights

of Hoel-Sterner (2007) and Persson-Sterner (2007), who have examined the same model

and some further insights of Guéant-Lasry-Zerbib (2007). It also refers to the paper by

Traeger (2010) who takes a broader perspective and improves on the previous results

in a model allowing for environmental decay. All these papers refer to the concept of

"ecological discount rates" emphasized in Guesnerie (2004) : this concept has also been

stressed in a somewhat more complex setting than ours, and with a di¤erent focus, by

Gollier (2009), . Note also that the importance of substitutability, which we emphasize

here, has been stressed earlier in Neumayer (2002) and Gerlagh-Van der Zwann (2002).

Note that the views presented here on discounting and precaution have a motivation

closely connected to the one of Weitzman (2009). However our emphasis is on relative

prices e¤ects: even if we put emphasis on the uncertainty that surrounds the long run

environmental issues and on the weight to be put on the bad case, we do not stress "fat

tails".

1 Model and preliminary insights

1.1 Goods and Preferences

We are considering a world with two goods. Each of them has to be viewed as an ag-

gregate. The �rst one is the standard aggregate private consumption of growth models.

The second one is called the environmental good. Its "quantity" provides an aggregate

measure of "environmental quality" at a given time. It may be viewed as an index re�ect-

ing biodiversity, the quality of landscapes, nature and recreational spaces, the quality of

climate, the availability of water.

We call xt the quantity of private goods available at period t, and yt the level of

environmental quality at the same period. Generation t, that lives at period t only, has

ordinal preferences, represented by a CES utility function: v(xt; yt) =
h
x
��1
�
t + y

��1
�

t

i �
��1

However, the measurement of cardinal utility, on which intertemporal judgements of

2There is also a related literature, which considers, as second good, an exhaustible resource. For recent
developments of this literature, see d�Autumne-Schubert (2008)
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welfare will be made, involves an iso-elastic function: V (xt; yt) = 1
1��v(xt; yt)

1��

The above modeling calls for the following comments:

� Concerning v; we have to stress two points:

�The reader has noted that xt and yt appear with the same coe¢ cient in the
function v. However, for a given generation, this may be viewed as re�ecting

a choice of unit in the measurement of yt. Hence, giving the same weight to

the private good index and to the environmental quality index is a matter of

notational convenience. However, leaving these weights constant across time or

at least bounding them to be non vanishing, is a substantive assumption. It

implies in particular that the concern for any of the two goods does not shrink.

The present assumption on the symmetric role of x and y is intended to re�ect

the fact that we "only have one planet", the preservation of which is not, and

will never be, a point of minor concern for its inhabitants, whatever their ability

to produce large quantities of new private goods. Even, if the speci�c modeling

is crude, this point seems well taken for our purpose in the sense that we do

not deny a priori the soundness of "ecological intuition".

� v is a CES utility function, where � is the elasticity of substitution between
the two goods3. It describes a speci�c pattern of substitution: when the ratio

environmental quantity (here quality) over private good quantity decreases by

one per cent the marginal willingness to pay for the environmental good, or its

implicit price, increases by 1=� per cent.

This setting with constant elasticity of substitution allows to write easily what

may be called the Green NDP. If we indeed regard the consumption good as

the numéraire, then the number y
�
x
y

� 1
�
is what we call Green NDP. Note that

it grows inde�nitely whenever x grows inde�nitely, if, as we suppose here, y

remains �nite. Note also that the ratio of Green NDP over standard NDP is

(independently of any numéraire) � =
�
y
x

�1� 1
� and the ratio of green NDP to

total NDP is � = �
1+�
.

� Let us come to V . The marginal utility of a "util" of v, takes the form v��: when

v increases by one per cent, marginal cardinal utility decreases by � per cent. This

coe¢ cient 1
�
has the standard interpretation of an intertemporal elasticity of sub-

stitution .
3In what follows, we will ignore the Cobb-Douglas � = 1 because it provides speci�c results.

5



1.2 Social welfare

Social welfare is evaluated as the sum of generational utilities. In line with the argument

of Koopmans, we adopt the standard utilitarian criterion:

1

1� �

+1X
t=0

e��tv(xt; yt)
1��

Two comments can be made:

� The coe¢ cient � is a rate of pure time preference. Within the normative viewpoint
which we mainly stress here, the fact that this coe¢ cient is positive has been crit-

icized, for example by Ramsey who claims that this is "ethically indefensible and

arises merely from the weakness of the imagination" or Harrod (1948) who views

that as a "polite expression for rapacity and the conquest of reason by passion".

Reconciling these feelings with Koopmans� argument leads however to accept a

positive and small �. The smaller the �, the more "ethical considerations become

preponderant". Along the "ethical" line of argument, it has been argued that the

number might be viewed as the probability of survival of the planet.

� We may view the coe¢ cient � as a purely descriptive one, re�ecting intertemporal
substitution and risk behavior, or as a partly normative coe¢ cient, re�ecting the

desirability of income redistribution across generations. This is the more frequent

interpretation we stress in the paper: a low (resp. high) � re�ects little (resp. a lot

of) concern for intergenerational equality.

At this stage, something more can be said on the philosophy of the approach taken

here.

We have adopted a stylized description of the trade-o¤ between environmental quality

and private consumption. We recognize that the modeling of the trade-o¤ is crude. How-

ever if the degree of substitutability between standard consumption good and environment

is �xed, we leave its value open. At this stage, we do not decide whether � is smaller, a

plausible short run hypothesis4, or greater than one, and we leave it �xed. We associate

a high �, (resp. low �) to a moderate, (resp. radical) environmentalist�s viewpoint, the

dividing line being obviously � = 1.

At this stage, one should give some insights on the qualitative di¤erences between

the cases � > 1 and � < 1, i.e. between the opinions we attribute respectively to the

4Since the marginal willingness for environmental amenities seems to grow faster than private wealth.
(see Krutilla J. Cichetti C. (1972))
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"moderate" and the "radical" environmentalists. These di¤erences echo the views that

shape the understanding of the future long run usefulness of environmental quality when

compared to private consumption.

First, let us consider � > 1. We have v(xt; yt) = xt

�
1 +

�
yt
xt

���1
�

� �
��1

and hence v

grows as xt whenever
yt
xt
tends to zero. The asymptotic relative contribution of environ-

ment to welfare is vanishing and similarly, the Green NDP becomes small when compared

to standard NDP. As we shall see later, the moderate environmentalist is very moderate

in the long run.

On the contrary, in the case where � < 1, it is useful to write v(xt; yt) = yt

�
1 +

�
yt
xt

� 1��
�

� �
��1

.

In that case, v does not grow any longer inde�nitely with xt, but tends to y (if yt = y

for t � 0). The increase in the consumption of private goods still contributes to welfare
but with an asymptotic limit associated with the level of environmental quality. Standard

NDP becomes small with respect to Green NDP.

Before turning to the intertemporal social optimum in a Ramsey growth model, we

need to introduce the main concept of this paper, namely the ecological discount rate.

1.3 Ecological discount rate

1.3.1 De�nitions

In order to give some intuition on the question of discount rates, we shall consider a

trajectory of the economy where environmental quality is �xed at the level y and where

the sequence of private goods consumption denoted xt is also given (we will note gt the

growth rate implicitly de�ned by xt+1 = e
gtxt).

We shall investigate the implicit discount factors at the margin of our reference tra-

jectory, that is the discount rates that make the reference trajectory locally optimal.

De�nition 1 The implicit discount rate for private good between periods t and t + 1, is
rt such that

e�rt = e��
@xV (xt+1; y)

@xV (xt; y)
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The discount rate between periods 0 and T is then classically de�ned as :

R(T ) =
1

T

T�1X
t=0

rt

The discount rate R(T ) tells us, as is standard, that one unit of consumption at period

T , is (socially) equivalent to e�R(T )T today.

We then introduce the ecological discount rate, which as stressed in Guesnerie (2004),

is the discount rate speci�c to the environmental good5.

De�nition 2 The ecological implicit discount rate between two consecutive periods is �t
de�ned by:

e��t = e��
@yV (xt+1; y)

@yV (xt; y)

The discount rate between periods 0 and T is:

B(T ) =
1

T

T�1X
t=0

�t

The ecological discount rate tells us that one marginal improvement of environment

at period T is socially equivalent to e�B(T )T of the same improvement occurring today.

It implies that the present generation, when viewing an improvement of environment

occurring at period T (the improvement being for example triggered by some present

spending), should compare the present cost with the discounted value (discounted with

the ecological discount rate) of the present marginal willingness to pay for the same

improvement today. (This is what is called "standard" ecological cost-bene�t analysis by

Guesnerie (2004)).

1.3.2 General properties

We now provide explicit formulas for the implicit discount rates along any given trajectory.

Proposition 3 The implicit private discount rate for the private good between periods t
and t+ 1 can be equivalently written as either:

rt = � + gt� +
1���
��1 ln

�
1+�t
1+�t+1

�
or
5Hoel-Sterner (2006) consider the same model as here or as in Guesnerie (2004), without referring

explicitly to the "ecological discount rate".
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rt = � + gt=� +
1���
��1 ln

�
1+�t

�1

1+�t+1
�1

�
where �t =

yt@yV

xt@xV
=
�
xt
yt

� 1
�
�1
is the ratio of Green NDP over standard NDP.

The �rst formula shows how the standard logic of discount rates (rt = � + gt�) is

a¤ected by the environmental concern. The correction depends upon the evolution of the

ratio �t of Green NDP over standard NDP. The second formula looks strikingly di¤erent

from the �rst one, although it is equivalent, but it puts emphasis on factors that will turn

out to be dominant when � < 1.

Now, we can �nally relate the ecological discount rate to the interest rate:

Proposition 4 The ecological discount rate between periods t and t + 1 is related to the
interest rate by:

�t = rt � gt=�

This last formula stresses the e¤ect of the growth of private consumption on the

ecological discount rate: it is qualitatively unsurprising that it is connected to the standard

discount rate with a negative correction that increases with the growth rate and decreases

when the elasticity of substitution increases. This formula, which captures the relative

price e¤ect that we are stressing here is particularly simple and intuitively appealing. We

can think about it as follows: it would be equivalent to give up one unit of environmental

quality at the present period t, in order to provide e�t of environmental quality tomorrow,

but the suggested move is equivalent, from the viewpoint of both generations, to give up

!t units of private goods (where !t is the willingness to pay for environmental amenities)

and to provide !tert units, as soon as !tert compensate for one unit of environmental

quality at time t+1, which is the case, if and only if !tert = !t+1e�t : It is straightforward

that !t+1 = !tegt=� so that !tert = !tegt=�e�t. The conclusion follows and stresses a key

ingredient for the understanding of the argument of the present paper6.

6If as in Traeger (2010), environmental quality were declining at rate g0; the formula becomes :

�t = rt � gt=� � g0=�
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2 Optimized growth: private consumption, ecologi-

cal discount rates and their evolution

2.1 Introduction

In Guesnerie (2004), asymptotic results for the ecological discount rate were derived at the

margin of any trajectory, whether the considered trajectory was non-optimal, or optimal

either in a �rst best sense or in a second best sense. Here the evolution of ecological

discount rates is going to be studied at the margin of an optimal trajectory that depends

on the value of the parameters. There is indeed a priori no reason to refer to the same

growth rate of consumption under di¤erent assumptions on �, since these assumptions

re�ect di¤erent views (moderate or radical) of the contribution of the environment to

welfare, and then potentially very di¤erent views on desirable growth.

In our model, we stick to the option of a �xed environmental quality, but put emphasis

on the endogeneity of private consumption and we choose the simplistic endogenous set-

ting of the AK type, where the interest rate r is exogenous, being then a one-dimensional

su¢ cient statistics of the intertemporal production possibilities7. Hence, as announced in

the introduction, our discussion within the model will focus on four parameters only. A

�rst one, �, associated with the ecological concern, a second one, �, linked to the intertem-

poral structure of preferences, the third one, �, associated with "ethical" considerations

and the last one, r, describing economic constraints.

2.2 Optimized growth and asymptotic results

Our viewpoint is normative, and we refer to the intertemporal social welfare function

introduced above. The "social Planner" maximizes:

1X
t=0

e��tV (xt; yt)

Our modeling choice leads the following economic and environmental constraints:

Economic constraints: �t+1 = e
r(�t � xt) where �t stands for the wealth at date t 8.

Environmental constraints: The environmental quality is limited to y that is: yt � y:
7Note that such an interest rate r can be extracted from a research arbitrage equation (as in Aghion-

Howitt (1998)), partly disconnected from the core model.
8A slightly more sophisticated version allows �t+1 = exp(r)[�t � xt + wt], where �t stands for the

wealth at date t and wt is a possible exogenous production �ow that introduces no binding constraint
into the analysis.
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We naturally assume that r > �: Furthermore, in this model, it is easy to check that

optimization would lead to an in�nite postponement of consumption if r(1� �) > �. We
rule this out and assume that � > 1-�

r
. This means, given the order of magnitude that we

have in mind for �, that we will consider that � is essentially greater than 1.

This hypothesis on the elasticity of intertemporal substitution goes with another one

that is going to be made in the remaining of this paper, namely �� > 1. Because we

suppose that � > 1, this is simply a hypothesis on �, which is supposed not to be too

small9.

The next proposition gathers all the asymptotic results of social optimization. The

�rst part stresses that optimality requires asymptotically constant growth whatever the

parameters under scrutiny. However, both the asymptotic economic growth rates and the

long run ecological discount rates crucially depends on the value of � and �:

Proposition 5 At the optimum, the private goods consumption grows asymptotically,
whatever �; �.

The optimal asymptotic growth rate for the private good x�t depends on � and is given

by the following formulae:

- If � > 1 then g�1 =
r��
�

- If � < 1 then g�1 = �(r � �)

The asymptotic ecological discount rate, associated with the socially optimal trajectory

is B�1 = limT!+1B
�(T ) given by the following formulae:

- If � > 1 then B�1 =
�
1� 1

��

�
r + 1

��
�

- If � < 1 then B�1 = �.

For � > 1, the asymptotic growth rate of consumption is r��
�
, �tting the standard

formula of the one-good model: the presence of the environmental good has asymptotically

no in�uence on the growth rate (although it does on the optimal trajectory). However,

even in this case, the asymptotic ecological discount rate is always smaller than r.

The result for the other case (� < 1) may be surprising for two reasons: �rst, it was,

a priori, unclear that the "radical" environmentalist would choose a positive asymptotic

9The di¤erences generated by the fact that �� > 1 or �� < 1 are emphasized in Traeger (2010). Our
choice on this subject has just been explained, and re�ects our viewpoint, optimisation in an AK model,
and our informal assesment of the "reasonable" values for the parameters. Note however that we expect
the �avour of all our conclusions be kept or even reinforced in the case not considered here (decreasing �
or �intuitvely increases the argument for a voluntarist environmental policy).
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growth10. The second point is more surprising since the asymptotic ecological discount

rate is totally disconnected from r and is very low since we assume � to be close to zero.

The opposition between the "radical" environmentalist and the "moderate" one is

clearly stressed by the behavior of the ecological discount rate. The asymptotic di¤erence

is again spectacular, as shown if we plot the asymptotic ecological interest rate as a

function of �:

Figure 1: Dependence on � of the variable B�1 when � = 1:5; r = 4% and � = 0:1%

10The evoked "intuition" is clearly not well grounded here since our model does not consider the
contribution of growth to environmental degradation. Introducing this phenomenon would indeed restore
to some extent the validity of the intuition.
For instance, if one considers an exogenous exhaustion of the environment at rate g0, the asymptotic

ecological discount rate is B�1 given by �� �g0 if � < 1 and by (1� 1
�� )r+

1
�� ��

g0

� if � > 1: Hence, the
e¤ect of the exhaustion is to decrease the ecological discount rate that can even be negative.
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The asymptotic results stress a discontinuity in the world around � = 1: However, the

signi�cance of the discontinuity is clari�ed, and quali�ed, by the next result.

Proposition 6 At each period T, the optimal trajectory, is a continuous function of the
parameters �. Subsequently, 8T <1; � 7! B�(T ;�) is continuous.

In a sense, the discontinuity associated with � = 1 is worrying and might be viewed

as an objection11 to our (admittedly crude) modeling choice. The above continuity result,

which says that at any given period results are continuous functions of �, weakens the

objection: the discontinuity "in the limit" is compatible with continuity "at the limit":

indeed B�(T ) is a continuous function of � when T is �xed (and �nite), as stated above.

All these results suggest to put the emphasis on the trajectory of discount rates.

2.3 The dynamics of ecological discount rates

Here, we are focusing attention on the evolution of ecological discount rates with time,

and what can be called yield curves for ecological discount rates B�(T ).

Since B�(T ) = r � 1
�
1
T

PT�1
t=0 g

�
t , the dynamics of the ecological discount rate is linked

to the dynamics of growth. Indeed, the dynamics of optimal growth can be assessed here

(we still suppose that �� > 1).

Proposition 7 g�t converges monotonically toward its limit according to the following
rules:

- If � < 1 then g�t is increasing

- If � > 1 then g�t is decreasing

Corollary 8 The shape of the yield curve is the following:
- If � < 1 then T 7! B�(T ) is decreasing (resp. increasing) and converges towards �.

- If � > 1 then T 7! B�(T ) is increasing (resp. decreasing) and converges towards�
1� 1

��

�
r + 1

��
�.

To illustrate our proposition, we drew yield curves using a simulation of the growth

path. Two examples are given below where the x-axis represents years and the y-axis the

value of the ecological discount rate.

11Or an appropriate modeling option, since it suggests a possible catastrophic change of the system.
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Yield curve example (� = 0:8, � = 1:5, r = 4%, � = 0:1%)

Yield curve example (� = 1:2, � = 1:5, r = 4%, � = 0:1%)

As it comes from the previous statements, in the �rst case (� < 1), the yield curve

is decreasing and converges towards �. In the second case (� > 1), the yield curve is

increasing and converges towards
�
1� 1

��

�
r + 1

��
�.

The �gures suggest that ecological discount rates converge slowly to their asymptotic

value. Another interesting and related visual insight is that, when � is low, the rate is low,

but, even when � is high, because the curve is increasing, the environmental rate is still
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low in the medium run. Hence, what the �gures show is that, for a time period between 1

and 2 centuries from now, the disagreement between the radical environmentalist and the

moderate environmentalist is not huge: the �rst one is between 0:45% and 0:35% and the

second one is between 0:95% and 1:2%. Their willingness to pay, for say a generation living

at date 150 equals the discounted value, with the ecological discount rate, respectively

roughly 2=3 and 1=3, multiplied by their own marginal willingness to pay, which itself

depends on their wealth and on their "ecological" views or intuition.

Note �nally that the knowledge of the ecological discout rates provides us all the

information required for the cost bene�t analysis of actions aiming at improving (slightly)

environmental quality at the margin of the optimized situation. The cost that one is

willing to pay, at time 0, for improving the environmental quality at any further time is

the discounted value, with the ecological discount rate, of the present willingness to pay

for the same improvement to-day. Naturally, environmental policies involve more complex

trade-o¤ (as shown next when considering irreversible damages to the environment), but

the basic principle is the one just described.

2.4 Environmental perpetuity

Yield curves provide a key information about the dynamics of ecological discount rates. It

should be noted that the conceptually important information conveyed in Proposition 5 on

the limit behaviour of discount rates has no clear operational consequence for cost bene�t

analysis (we do not know how long is the long run). On the contrary, the understanding

of the path of convergence stressed in Corollary 8 has an evident bite on the conclusions

of cost-bene�t analysis. In what follows, we are going to consider a simple problem that

brings a necessary brick to the understanding of the (less simple) issues associated with

the worldwide debate on the so-called precautionary principle.

The problem under scrutiny is the following: consider a damage to the environment

that would take place today and say that, in order to avoid this damage for itself, the

present generation is willing to pay x. How much should it be willing to pay if this damage

not only occurs now but is irreversible, i.e. if it deteriorates the well-being of all future

generations? Let us call mx the willingness to pay to avoid this damage for all future

generations, instead of x; the willingness to pay when the damage is temporary12) and

only concerns the present generation.

In a sense, avoiding the damage can then be viewed as providing x environmental

perpetuities, (a perpetuity being an in�nitely lived environmental service giving one unit

12All these reasonings can easily be adapted to settings in which the life duration of each generation is
T periods.
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of environmental good at each period). Hence m is the "price" to be given to each of these

perpetuities.

We provide here a lower bound on m.

Proposition 9 Let�s introduce a = r(1� 1
��
) + � 1

��
.

In the present deterministic context, if the initial generation is willing to pay x in order

to avoid a temporary (here one year) damage, it is willing to pay mx to avoid making it

irreversible, where the number m is greater than 1
a

The reader will notice that, in our admittedly simple world, the result has a striking

simplicity and robustness. First, the lower bound to m, is valid both13 for � > 1; and

for � < 1. Second, it is also remarkable that the bound on m does not depend on initial

wealth.

Let us note that if the planner neglected the relative price e¤ect associated with the

increase in relative desirability of the environmental good, the discount rate would be r and

m would be approximately 1
r
(approximately because we use an exponential discounting)

as for a classical perpetuity. Hence, the introduction of the environmental good can

drastically change the willingness to pay of the present generation for an environmental

perpetuity that protects all future generations from an irreversible damage. For instance,

if we consider that � ' 0, then m is, in our deterministic study with �� > 1, greater than

the "naive" assessment 1
r
, the multiplier being 1

1� 1
��

. If we consider the parameters values

associated with the above graphs (� = 1:5), instead of having m ' 25 (resp. m ' 50) for
r = 4% (resp. r = 2%), we get when � = 0:8; m � 6 � 25 = 150 (resp. m � 300) and
with � = 1:2, m � 2:25� 25 ' 56 (resp. m � 112:5)
Let us now consider the case where the irreversible damage will occur later in period

� , possibly far away from now. Again, the above question is meaningful, although m is

no longer a priori necessarily greater than one.

Proposition 10 m > e�a� 1
a

The previous proposition told us that a may be viewed as an upper bound for the

discount rate to be used for evaluating "environmental perpetuities". It is remarkable

that the present proposition tells us that the same is true, i.e. a can consistently be used

to provide a lower bound of the value of what might be called an "environmental forward

perpetuity".

13However, the result depends on our hypothesis �� > 1. If �� < 1 then the lower bound is nothing
but 1� which is very high.
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3 Precautionary principle: how to tackle the uncer-

tainty about the elasticity of substitution �?

3.1 An unusual form of uncertainty

3.1.1 Introduction

In the preceding part on environmental perpetuities, we focus on the desirable action

to be taken in order to avoid an "irreversible damage to the environment". The so-

called precautionary principle, in its most standard formulations, stresses the uncertainty

surrounding a damage: "Where there are threats of serious or irreversible damage, lack of

full scienti�c certainty shall not be used as a reason for postponing cost-e¤ective measures

to prevent environmental degradation". This leaves somewhat open the question of the

right intensity of action. This is the question tackled in this section. It suggests cost-

bene�t analysis tools, aimed at evaluating the desirability of precaution in a situation

where uncertainty plays a major role.

In the present framework, we focus attention on an irreversible damage, that will

take place in the future, and whose harmfulness is now unclear but will be fully revealed

when the damage occurs. Noteworthy, we do not consider that the damage itself has an

uncertain intensity, although this is clearly the case in reality. Rather, our focus is on its

harmfulness. In other words, we will focus on the uncertain impact of the damage in terms

of welfare. Indeed, we believe that, as far as the environmental protection of the planet

and climate change in particular are concerned, an important part of the uncertainty

originates in the extent of the welfare impact of "ecological accidents" and not only on

their intensity.

Formally, we assume that the uncertainty bears on the welfare function and more

precisely on �: in the �rst periods, this uncertainty is not resolved and � can take two

values: �l or �h (�l < 1 < �h) �and we attribute probabilities p and 1�p to the respective
cases. The two values re�ect the a priori viewpoints of what we have called the radical

and the moderate environmentalist. At time � , an irreversible damage to the environment

will take place (it consists here, of a small decrease of y) and the social cost of the damage

will be revealed, i.e. the true value of � will be known (either �l or �h). In a sense, the

occurrence of the environmental "accident" at time � ; provides an experiment that allows

to assess exactly the value of �. The fact that nothing will be learnt between now and �

remains extreme. This assumption simpli�es the analysis, an analysis which remains an

unavoidable reference and a prerequisite to the consideration of progressive accrual of the

information.
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3.1.2 The optimization problem

As suggested above, let us assume that � 2 f�l; �hg, where �l < 1 < �h is learnt instan-
taneously at a time � > 0. The new optimization problem to determine the consumption

path is the following:

��1X
t=0

e��t[pV (�l;xt; y) + (1� p)V (�h;xt; y)] + pU(�� ; �l) + (1� p)U(�� ; �h)

with �0 given, �t+1 = er[�t � xt] and where U(�; �) = Max(xt)t��
P1

t=� e
��tV (�;xt; y) is

the Bellman function associated with the non-random problem after we learnt �. At this

time, the deterministic results provide the required information, given the initial condition

which is the remaining wealth �� .

The next paragraphs stress that the case � < 1 should be weighted signi�cantly in our

present decisions, even if it is unlikely. We will present di¤erent forms of this result that

clearly echo the just discussed precautionary principle.

3.1.3 A �rst result: a weak precautionary Principle

The �rst version of this precautionary principle (the weak precautionary principle) is an

asymptotic statement: the rate to be used to discount environmental good is asymptoti-

cally the ecological discount rate corresponding to the smallest � (i.e. � = �l < 1). The

second and stronger form of precautionary principle bears on the way m depends on p.

The resolution of the above problem is similar to what we have done before in the

deterministic case, at least for the asymptotics. After � has been elicited, the two trajec-

tories x�lt and x
�h
t which are identical for t < � , diverge: if � is equal to �l the asymptotic

growth rate of x�t = x
�l
t is g

�
1 = �l(r � �) and if � is equal to �h the asymptotic growth

rate of x�t = x
�h
t is g�1 =

r��
�
.

Using these asymptotic results on growth and the formula de�ning the ecological

discount rate in this context �namely e�B
�(T )T = e��T

h
p@yV (�l;x

�l
T ;y)+(1�p)@yV (�h;x�hT ;y)

p@yV (�l;x
�
0;y)+(1�p)@yV (�h;x�0;y)

i
�

we can deduce the asymptotic value of the ecological discount rate.

Proposition 11 (Weak Precautionary Principle).Viewed from time zero the asymp-
totic ecological discount rate B�1 does not depend on p > 0 and is equal to

B�1 = �

Uncertainty leads to consider asymptotically the smallest possible ecological rate. This

is the counterpart for the "ecological discount rate" of the limit behavior of discount
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rates, stressed by Weitzman (2001). This is a precautionary principle, in the sense that

it suggests to put emphasis on the long run bad situations even if uncertain. It is weak,

since, as argued above, its operational content for cost-bene�t analysis is almost nil. The

next paragraph provides an operational precautionary principle.

3.2 Strong precautionary Principle

3.2.1 The question

The question raised in this Section is similar to that raised in a deterministic context:

how much is the present generation willing to pay in order to avoid an irreversible damage

to the environment, that would take place at time �? However, and contrary to our

deterministic case, the harmfulness of the (�xed) damage in terms of welfare is not well

ascertained.

Our objective is to generalize the previous deterministic results on the multiplier m,

which relates the willingness to pay of the present generation14 to avoid the damage for

itself, forgetting about its descendants or viewed as temporary, to its willingness to pay

to avoid the irreversible damage at date � :

We know the answer in the limit deterministic cases: m has a lower bound e�a� 1
a
where

a = a(l) = r(1� 1
�l�
)+ � 1

�l�
if � is equal to �l, and similarly a = a(h) = r(1� 1

�h�
)+ � 1

�h�

if � is equal to �h.

What are plausible conjectures on the bounds on the multiplier in the stochastic

case? One may expect m to be bounded from below by an expression of the form

e�a�
h
p 1
a(l)
+ (1� p) 1

a(h)

i
, where a would neither be a(h) nor a(l) and where the term

between bracket is the expected value of the future damage to the environment as seen

from period � :

The following proposition shows that the intuitive conjecture is valid only once the

probability of the bad case15 is biased upward. Indeed, this upward bias is spectacular:

Proposition 12 (Strong Precautionary Principle, �rst version)
Let�s introduce, as in the deterministic case, a(h) = r(1 � 1

�h�
) + � 1

�h�
and similarly

a(l) = r(1� 1
�l�
) + � 1

�l�
.

14Note, that naturally, the willingness to pay of the present generation depends on its wealth and on
the true value of �. In the uncertain case under scrutiny, again the willingness to pay of the present
generation does depend on the plausibility of the two cases, as measured by p, the probability of being
characterized by a low �.
15The bad case here, and from now, refers to the case of a low � (� = �l < 1).
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In the random case, if p lies in (0; 1), we have:

m > e�B
�(�)�

�
1

a(l)

�
pN�(�)

pN�(�) + (1� p)

�
+

1

a(h)

�
(1� p)

pN�(�) + (1� p)

��
where N�(�) > 1 grows exponentially with � .

The above formula provides information on the bounds on m that, as desirable, do

encompass the information obtained in the deterministic case. Note however, that the

bound we �nd here does not only depend, as in the deterministic case, on the four ba-

sic parameters of the models, but also on the characteristics of the initial situation (in

particular through N�(�)).

The proof is given in the appendix, but we may give some insights into it. The fact that

we discount at time 0 the willingness to pay at � with the ecological discount rate B�(�)

is intuitively unsurprising, as well as the consequence of easy algebra. As suggested above,

the fact that the (bounds on the) value of the irreversible damage to the environment,

seen from period � , when the bad case occurs (resp. the good case), be proportional to 1
a(l)

(resp. 1
a(h)
) is, in view of our previous results, intuitive. Now, concerning the weights to

associate to each case, it may be less intuitive that the ratio of the appropriate corrections

to be made to p and 1� p has to be the ratio of the marginal utility of the environment
in the bad and in the good cases, which is nothing else that N�(�): The fact that N�(�)

increases with � , and is unbounded, follows from the examination of the formulas, just in

line with the intuition brie�y presented in Section 1.

Hence, the expectation of the deterministic lower bounds stressed in Proposition 9,

(which comes naturally into the picture, as suggested above) has to be measured with

distorted probabilities. Indeed, the probability to attribute to the bad case with respect

to the good case has to be severely distorted: the later the date, the more weight we

put on the bad case, the weight becoming closer to its limit 1, counteracting the (weak)

tendency of the (ecological) discount rate to dismiss precaution for late damages. Let us

be more explicit on that by considering the following corollary:

Corollary 13 (Strong Precautionary Principle, second version). There exists a
function (p; �) 7! �(p; �), concave with respect to p, verifying:

�(0; �) =
1

a(h)
�(1; �) =

1

a(l)

d�

dp
(p = 0; �) =

�
1

a(l)
� 1

a(h)

�
N�(�) ����!

�!+1
+1
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d�

dp
(p = 1; �) =

�
1

a(l)
� 1

a(h)

�
1

N�(�)
����!
�!+1

0

lim
�!+1

�(p; �) =
1

a(l)
;8p > 0

such that:

m > e�B
�(�)��(p; �)

To well understand the last statements, let us come back to the "plausible" conjec-

ture discussed at the beginning of the subsection. It was suggested that m might be the

discounted value (with the appropriate discount rate) of p 1
a(l)

+ (1 � p) 1
a(h)
: What our

analysis says is that if � is large, and p large, the intuitive formula tends to be right; but

that when p is small, the lower bound on the multiplier is far from the discounted value of

p 1
a(l)
+(1�p) 1

a(h)
and closer to the discounted value of 1

a(l)
. This is a clear and strong form

of precautionary principle. If we do not know whether or not an environmental accident

will lead to real downfall in welfare in the future, here at date 100, a key element of our

computation is, in a sense, to proceed as if the bad case were to happen for sure.

Let us illustrate the importance of the point with numbers. Suppose that we are in a

world in which the present willingness to pay to avoid the irreversible damage from the

viewpoint of the sole present generation welfare is let us say, 0:1% of its NDP, if the harm

is minor in terms of welfare, and 1% if the welfare harm is high. What bounds can we �nd

on its willingness to pay for avoiding the irreversible accident occurring at period � = 100?

With the data previously used (r = 4%; � = 0:1%; � = 1:5; �l = 0:8; �h = 1:2), we have

a(l) = 1=150 and a(h) ' 1=56, so that e�a(l)� ' 1=2 and e�a(h)� ' 1=5:9. Hence, for a

small p, say p = 1=10, the intuitive lower bound for the multiplier, applying broad linear

approximations; is just below 14 (which means a willingness to pay to avoid the accident

of 2:6% of NDP16). Now, with the bounds given in Proposition 12, the same calculations,

assuming � is large enough to apply the approximation, give a lower bound for m equal

to 31:5, i.e. a willingness to pay of around 6% of NDP (more than twice more), and this

for a low probability of the occurrence of the accident... For a high probability accident,

the lower bound on the multiplier is 75.

Although they are already large, we leave to the reader to view this numbers as

applying metaphorically to the question of climate change, particularly in view of the fact

that the computed multipliers are even far higher.

Indeed, although an exact solution of the optimization program is untractable ana-

lytically, the random case can easily be solved numerically for all p�s. We illustrate our

16applying once again a rough linear approximation.

21



results with the preceding set of parameters in which, as above, before time � = 100 (� is

revealed at this time), the agent hesitates between �h = 1:2 and �l = 0:8 (with probabil-

ities 1 � p and p). In this situation, with r = 4%; � = 0:1%; � = 1:5 we �nd numerically
the ecological discount rates and compute m for any possible p in [0; 1]:

This �gure illustrates in a spectacular way our qualitative statement: the function

p 7! m(p) is quickly increasing (and concave). Hence, even for small p strictly greater

than 0, m is far from m(p = 0) and closer to m(p = 1).

Conclusion

The paper proposes a simple model for discussing the long run issues associated with en-

vironmental quality. The model describes a world with four parameters, that respectively

re�ect ecological concern, resistance to intertemporal substitution, intergenerational al-

truism and feasibility constraints. These parameters are supposed to remain constant over

time, an assumption which makes the model tractable and simple, although it is certainly

too extreme. Note that the paper takes a parsimonious defence of the environmentalist

viewpoint in the sense that we rule out values of parameters too much favorable to his

views: we assume that growth has no negative e¤ect on the environment, etc.
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The paper shows that long run environmental policies are crucially a¤ected by the

"ecological view", in particular but not only, if the radical viewpoint is adopted. Also,

the paper shows that the radical viewpoint on environment, even when it is unlikely to be

true, has however bite on the determination of present policies, a fact that may be viewed

as supporting some form of a precautionary principle. In a companion paper, (work in

progress) we will provide back of the envelope computations based on an variant of the

present model to the global warming issue that suggest an upward re-evaluation of the

Stern estimates of the merits of action.

Let us repeat that our simple setting allows to focus both on the relative price e¤ect

and on the uncertainty dimension of the economic appraisal of ecological intuition. To put

it in a nutshell, the paper stresses that the "economic" argument, along which we should

not sacri�ce the present generations�welfare to the welfare of our descendants that will be

wealthier than us, is valid here, but has to be strongly quali�ed. There is a most valuable

gift that is worth transmitting to our descendants, because it may be very important for

them, although this is not sure. That gift is a good environment.
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4 Appendix

Proof of Proposition 3:

The implicit discount rate rt for private goods between periods t and t+ 1 is uniquely de�ned by:

e�rt = e��
@xV (xt+1; y)

@xV (xt; y)
= e��

�
xt+1

xt

�� 1
�

0@xt+1 ��1� + y
��1
�

xt
��1
� + y

��1
�

1A
1���
��1

Taking logarithms, this gives:

rt = � + gt=� �
1� ��
� � 1

ln

0@xt+1 ��1� + y
��1
�

xt
��1
� + y

��1
�

1A = � + gt=� +
1� ��
� � 1

ln

 
1 + ��1t
1 + ��1t+1

!

This is the second formula of Proposition 3. The �rst formula can be obtained by the same reasoning:

rt = � + gt=� �
1� ��
� � 1

ln

2664�xt+1xt
���1

� 1 +
�

y
xt+1

���1
�

1 +
�
y
xt

���1
�

3775 = � + gt� + 1� ��
� � 1

ln

 
1 + �t
1 + �t+1

!

Proof of Proposition 4:

We have e��t = e��
(@yV )t+1
(@yV )t

= e��
(@xV )t+1
(@xV )t

�
xt+1
xt

�1=�
= e�rtegt=� and hence, �t = rt � gt=�.

Proof of Proposition 5:

We consider the Lagrangian of the problem L =
P1
t=0 exp(��t)[V (xt; yt) + �t(er[�t � xt]� �t+1) + �t(y � yt)]:

The �rst order conditions are the following:

8><>:
@xtL = 0 () @xV (x�t ; y

�
t ) = e

r�t

@�t+1L = 0 () �t+1 exp(r � �) = �t
@ytL = 0 () @yV (x�t ; y

�
t ) = �t

The �rst thing to note is that y�t = y. Then, since r > �, �t and @xV (x
�
t ; y) are both decreasing and tend to zero. The

natural consequence is that the consumption of the private good x�t grows and tends to +1.

The growth path x�t is then characterized by: x
�
t
� 1
�

h
x�t

��1
� + y

��1
�

i 1���
��1

= @xV (x�t ; y) = e
r�t =

�0e
r

exp((r��)t)

� In the � > 1 case, x�t
�� �1 �0e

r

exp((r��)t) . Hence, the asymptotic growth rate is the same as if there were no

consideration of the environmental good g�1 = r��
�

� In the � < 1 case, x�t
� 1
� �1 �0e

r

y
1
�
��

exp((r��)t)
. Hence, the growth rate in that case is given by g�1 = �(r � �)

The results on the ecological discount rate then follow from Proposition 4.

Proof of Proposition 6: (This proof can be omitted at �rst reading)

It�s very important here to consider v(x; y) =
h
1
2
x
��1
� + 1

2
y
��1
�

i �
��1 with the weights 1

2
to extend the function

properly and also to remind that V = v1��
0
�1

1��0 . Obviously, it doesn�t change anything to our preceding results since these

changes only consist in additive or multiplicative scalar adjustment.

We have �t = r �
g�t
�
and thus B�(T ) = r � 1

�
1
T
ln
�
x�T
x�0

�
:

Therefore, the only thing to prove is that 8t; x�t is a continuous function of �. But we know that the growth path is

de�ned by the �rst order condition @xV (x�t ;�) =
�0e

r

exp((r��)t) where we omitted the reference to y here since we focus on �.

Then it is easy to see that the only two things we need to prove are that:
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� the Lagrange multiplier �0 is a continuous function of �.

� the function h(�; �) implicitly de�ned by @xV (g(�; �);�) = � is continuous.

The second point is easy. Notice �rst that the function (x; �) 7! V (x;�) can be extended to a C2 function (the proof

is easy). Then, by the implicit function theorem, h(�; �) is a C1 function ((�; �) 2
�
R+�

�2).
Therefore, the only thing to prove is that the �rst Lagrange multiplier �0 is a continuous function of �. Let us recall that

�0 is de�ned by the resources constraint
P1
t=0 x

�
t e
�rt =

P1
t=0 h(�0e

r exp((�� r)t); �)e�rt = �0+
P1
t=0 wte

�rt(:= �117 )

Here, we cannot apply directly the implicit function theorem to the left hand side. However, if we consider the restricted

optimization problem with a �xed time horizon T 18 then the associated Lagrange multiplier (�T0 ) is implicitly de�ned by

TX
t=0

h(�T0 exp((� � r)t); �)e�rt = �0 +
TX
t=0

wte
�rt(:= �T )

and the implicit function theorem applies: �T0 is a C1 function of �.

Now, we can approximate �0 by �T0 and this gives: j�0(�)��0(~�)j � j�0(�)��T0 (�)j+j�T0 (�)��T0 (~�)j+j�T0 (~�)��0(~�)j.
Hence, we see that the only thing to prove is a pointwise convergence in the sense that, for � �xed, we have a convergence

of �T0 (�) towards �0(�) as T !1. To prove that let�s introduce FT : z 7!
PT
t=0 h(ze

r exp((� � r)t); �)e�rt and similarly
F : z 7!

P1
t=0 h(ze

r exp((� � r)t); �)e�rt. These two functions are positive and decreasing because h is a positive and
decreasing function of �. Moreover, FT is continuous and there is a pointwise convergence of FT towards F . By monotony,

FT converges towards F uniformly on every compact set and therefore, F is a continuous function and so is the inverse of

the function F .

By the second Dini�s theorem then, the inverse of the function FT converges uniformly on every compact set towards the

inverse of the function F .

But �T0 � �0 = F
�1
T (�T )� F�1(�1) and hence, since �T ! �1, we are done with the proof.

Proof of Proposition 7:
Let us go back the �rst order conditions that de�ne the growth path. We have @xV (x�t ; y) = e

r��@xV (x�t e
g�t ; y):

Therefore, the growth rate g, as a function of x is de�ned implicitly by (we now omit the y terms) V 0(x) exp(r � �) =V 0
�
xeg(x)

�
:

Taking logs and deriving we get V 00(x)
V 0(x) =

V 00(xeg(x))
V 0(xeg(x))

eg(x)(1 + g0(x)x)

Hence, the sign of g0(x) is the sign of V 0(x)V 00(xeg(x))eg(x)�V 0(xeg(x))V 00(x). This sign is simply the sign of d
dx

V 0(xeg)
V 0(x)

where g is now an independent variable. The latter expression can be written as e�g=� d
dx

�
y+(xeg)

�
��1

y+x
�

��1

� 1���
��1

:

The sign of this derivative is the sign of 1���
��1

��1
�

�
eg

��1
� � 1

�
= 1���

�

�
eg

��1
� � 1

�
Since g > 0 in our context, this expression has the same sign as 1� � and this proves our result.

Proof of Proposition 9:

By de�nition, m is equal to
P1
T=0 exp(�B�(T )T ).

Since we want to �nd a lower bound for m, we need to �nd an upper bound for B�(T ).

The ecological rate B�(T ) can be written B�(T ) = r� 1
�T

PT�1
t=0 g

�
t : Hence, the problem boils down to �nd a lower bound

for g�t .

Now, from Proposition 3, we know that a lower bound to g�t is
r��
�

so that B�(T ) � a.
This gives m =

P1
T=0 exp(�B�(T )T ) �

P1
T=0 exp(�aT ) =

1
1�exp(�a) �

1
a
:

Proof of Proposition 10:

17This quantity is supposed �nite for the problem to have a solution.
18Max

PT
t=0 exp(��t)u(xt; y) s.t. �t+1 = er[�t + wt � xt]

27



By de�nition, m is now equal to
P1
T=� exp(�B�(T )T ):

Using the same inequality as before, we have m �
P1
T=� exp(�aT ) =

exp(�a�)
1�exp(�a) � e

�a� 1
a

Proof of Proposition 11:

Let�s consider T > � and let�s recall �rst the de�nition of B�(T ) in this context:

B�(T ) = � � 1

T
ln

"
p@yV (�l;x

�l
T ; y) + (1� p)@yV (�h;x�hT ; y)

p@yV (�l;x
�l
0 ; y) + (1� p)@yV (�h;x�h0 ; y)

#

To prove our result, it is su¢ cient to prove that the expression in the logarithm remains bounded as T increases.

Hence, we are going to prove that the following expression is bounded:

py
� 1
�l

�
x�lT

�l�1
�l + y

�l�1
�l

� 1��l�
�l�1

+ (1� p)y�
1
�h

�
x�hT

�h�1
�h + y

�h�1
�h

� 1��h�
�h�1

The �rst part of the expression converges toward py�� and is therefore bounded.

For the second part of the expression, x�hT

�h�1
�h +y

�h�1
�h !1 so that, since 1��h�

�h�1
< 0 (we supposed �h� > 1), the second

part of the expression tends toward 0 and this proves the result.

Proof of Proposition 12:

For T � � , we have, by de�nition exp (�B�(T )T ) = exp (��T )
�
p@yV (�l;x

�l
T ;y)+(1�p)@yV (�h;x�hT ;y)

p@yV (�l;x
�
0 ;y)+(1�p)@yV (�h;x

�
0 ;y)

�
We are going to separate the reasoning into two parts to factorize what happens after time � on the two di¤erent

trajectories. We have:

exp (�B�(T )T ) =pe��(T��)
"
@yV (�l;x

�l
T ; y)

@yV (�l;x�l� ; y)

#
� e���

�
@yV (�l;x

�l
� ; y)

p@yV (�l;x
�
0; y) + (1� p)@yV (�h;x�0; y)

�

+(1� p)e��(T��)
"
@yV (�h;x

�h
T ; y)

@yV (�h;x�h� ; y)

#
� e���

�
@yV (�h;x

�h
� ; y)

p@yV (�l;x
�
0; y) + (1� p)@yV (�h;x�0; y)

�

The terms e��(T��)
�
@yV (�l;x

�l
T ;y)

@yV (�l;x
�l
� ;y)

�
and e��(T��)

�
(1� p) @yV (�h;x

�h
T ;y)

@yV (�h;x
�h
� ;y)

�
can easily be controlled using what we know

from the deterministic cases: they are respectively greater than e�a(l)(T��) and e�a(h)(T��).

The other terms correspond to what happens before time � and we would like to link them to the ecological discount

rate B�(�).

Let�s take �rst the term corresponding to the "l-trajectory":

e���
�

@yV (�l;x
�l
� ; y)

p@yV (�l;x
�
0; y) + (1� p)@yV (�h;x�0; y)

�

= e���
�
p@yV (�l;x

�l
� ; y) + (1� p)@yV (�h;x�h� ; y)

p@yV (�l;x
�
0; y) + (1� p)@yV (�h;x�0; y)

�
�
�

@yV (�l;x
�l
� ; y)

p@yV (�l;x�l� ; y) + (1� p)@yV (�h;x�h� ; y)

�

= e�B
�(�)�

�
@yV (�l;x

�l
� ; y)

p@yV (�l;x�l� ; y) + (1� p)@yV (�h;x�h� ; y)

�
= e�B

�(�)�

@yV (�l;x
�l
� ;y)

@yV (�h;x
�h
� ;y)

p
@yV (�l;x

�l
� ;y)

@yV (�h;x
�h
� ;y)

+ (1� p)

Now, let�s turn to the term corresponding to the "h-trajectory":

e���
�

@yV (�h;x
�h
� ; y)

p@yV (�l;x
�
0; y) + (1� p)@yV (�h;x�0; y)

�

=

�
@yV (�h;x

�h
� ; y)

p@yV (�l;x�l� ; y) + (1� p)@yV (�h;x�h� ; y)

�
� e���

�
p@yV (�l;x

�l
� ; y) + (1� p)@yV (�h;x�h� ; y)

p@yV (�l;x
�
0; y) + (1� p)@yV (�h;x�0; y)

�
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=

�
@yV (�h;x

�h
� ; y)

p@yV (�l;x�l� ; y) + (1� p)@yV (�h;x�h� ; y)

�
� e�B

�(�)� = e�B
�(�)� 1

p
@yV (�l;x

�l
� ;y)

@yV (�h;x
�h
� ;y)

+ (1� p)

Now, if we compile all the inequalities, we obtain:

e�B
�(T )T > e�B

�(�)�
�
pe�a(l)(T��)

�
N�(�)

pN�(�) + (1� p)

�
+ (1� p)e�a(h)(T��)

�
1

pN�(�) + (1� p)

��

where N�(�) stands for @yV (�l;x
�l
� ;y)

@yV (�h;x
�h
� ;y)

If we sum everything, we get:

m > e�B
�(�)�

�
p
1

a(l)

�
N�(�)

pN�(�) + (1� p)

�
+ (1� p) 1

a(h)

�
1

pN�(�) + (1� p)

��
We see that one thing remains to be done: studying N�(�).

We can write:

N�(�) =
@yV (�l;x

�l
� ; y)

@yV (�h;x�h� ; y)
=

24y� 1
�l

�
x�l�

�l�1
�l + y

�l�1
�l

� 1��l�
�l�1

35 =
24y� 1

�h

�
x�h�

�h�1
�h + y

�h�1
�h

� 1��h�
�h�1

35

=

2664y��
241 + �x�l�

y

��l�1
�l

35
1��l�
�l�1

3775 =
2664y��

241 + �x�h�
y

��h�1
�h

35
1��h�
�h�1

3775 =
241 + �x�l�

y

��l�1
�l

35
1��l�
�l�1

=

241 + �x�h�
y

��h�1
�h

35
1��h�
�h�1

It�s clear that this expression grows exponentially with � (since �h� > 1).

Also, under our hypotheses, this expression is always greater than 1 because we divide a term greater than 1 by a term

smaller than 1.

Proof of Corollary 13:

From Proposition 12, we see that the only thing to prove is that the function

p 7! p
1

a(l)

�
N�(�)

pN�(�) + (1� p)

�
+ (1� p) 1

a(h)

�
1

pN�(�) + (1� p)

�

lies above it chord
h�
p = 0; 1

a(h)

�
;
�
p = 1; 1

a(l)

�i
.

This is guaranteed since N�(�) is greater than one (see Proposition 12).
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