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1. BEYOND STOCHASTIC CONTROL

1.1. Bayesian control. This type of problems are motivated by some questions arising
from the field of advertising. The Bayesian control theory is a different formulation of
optimal control problems with partial information. The equations resulting from these
problems has already been studied in the past, however the techniques were not devel-
oped enough at the time to handle HJB equations in infinite dimension. The Mean Field
Games (MFG for short) theory has allowed to develop many tools for infinite dimensional
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2 NOTES FROM P.-L. LIONS’ LECTURES AT THE COLLÈGE DE FRANCE

HJB equations. We revisit classical problems of stochastic control, by trying to improve
some results using this recent progress.

We begin the presentation with an example called Bayesian learning. We consider the
following dynamics

dXt = aat dt + dWt, X0 = x 2 Rd.
The noise is modeled by a standard Rd-Brownian motion Wt, a is an unknown parameter
and at is the control. In a classical optimal control situation, if the noise and a are known,
then we know X, and the whole problem consists in choosing the right control. In this
situation there is a lack of information related to the parameter a.

Let µt be a probability measure which expresses the lack of information related to the
parameter a at the instant t � 0. We start with an initial probability measure (an initial as-
sumption) µ0. Having observed Xt up to the moment t, we want to learn more and better
the values of the parameter a through the evolution µt of the initial probability measure
µ0. The question that naturally arises is the following : starting from an observation of
dXt, how to build the measure µt+dt (the new hypotheses on a). One have

µt+dt(a) =
µt(a) exp(�(dXt � aat dt)2/2 dt)R
µt(b) exp(�(dXt � bat dt)2/2 dt)db

.

Moreover, we formally assume that (DXt)2 is of an order dt, so that up to terms of order
” dt” we have

µt+dt(a) =
µt(a) exp(aat dXt � a2

a

2
t dt/2)R

µt(b) exp(bat dXt � b2
a

2
t dt/2)db

,

thanks to the fact that the increments of the Brownian motion are independent. Using an
asymptotic expansion, we infer that

µt+dt(a) = µt(a)
1 + aat dXt � a2

a

2
t dt/2 + a2

a

2
t (dXt)2/2

1 +
R

bµtat dXt
,

so that

dµt = µt(a)

(✓
aat dXt �

✓Z
bµt(b)db

◆
at dXt

◆
+

✓Z
bµt(b)db

◆2
a

2
t dt

)

�aa

2
t µt(a)

✓Z
bµt(b)db

◆
dt,

where the last expansion is pushed to the second order since there is a nonlinear op-
eration. This explains why the other two additional terms are obtained. We infer the
following problem,

(1.1) dµt = µt

✓
a �

Z
bµt

◆
at dXt �

✓Z
bµt

◆✓
a �

Z
bµt

◆
a

2
t µt dt, µ0 2 P(Rd),

where
R

bµt =
R

bµt(b)db. Note that, this equation describes only the learning problem
and not the optimisation mechanism. Moreover, note that all the parameters are coupled
through mean values. Equation (1.1) is a stochastic partial differential equation, where X
is a semi-martingale whose quadratic variation is that of a Brownian motion.

The existence of a learning process means that µt must reveal the speed mean value
of Xt as t ! •. Therefore we hope that µt converges to a Dirac mass as t ! •. Let
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us start with a first observation on the structure of equation (1.1): since equation (1.1) is
multiplicative, the support of the measure µ is always decreasing. In particular, for any
t � 0,

supp(µt) ⇢ supp(µ0).
This shows the importance of the choice of the initial hypothesis. Indeed, if one chooses
a bad support, one can never leave it and so, never learn the correct information.

In addition to the learning question, it is also important to understand how to learn
quickly. More precisely, we are also interested in the relationship between the level of
effort (which is reflected in the optimization problem) and the speed of the learning pro-
cess. This would make a compromise between the effort required to learn quickly and
the cost of this effort.

Note that in the derivation of equation (1.1), the terms that appears in the right hand
side are essentially due to the normalization. One can therefore look at the evolution by
eliminating all the terms that appeared because of the division. In fact, by removing the
normalization we get much simpler equations. Let

(1.2) dnt = ntaa dX, n0 = µ0,

so that
nt = exp

✓
a
Z t

0
as dXs � 1

2
a2
Z t

0
a

2
s ds

◆
n0.

Now, set
mt := nt

.Z
nt(b)db.

We have

dmt =
dntR

nt
� nt d

R
nt

(
R

nt)2 � d < nt,
R

nt >

(
R

nt)2 +
nt < d

R
nt >

(
R

nt)3 ,

so after computation one recovers from this expression equation (1.1). So, if there is
uniqueness for equation (1.1), thus

µt = nt

.Z
nt

and we can exploit the simplicity of equation (1.2). In both cases, we have an evolution
in an infinite dimension space (which is P(Rd) for equation (1.1), and m+

b (R
d): the space

of positive bounded measures, for equation (1.2)).
We shall start by looking at two simple examples where the reduction to finite dimen-

sion is possible.

Example 1.1 (Gaussian distribution ). Assume that µ0(da) = exp(�l0(a � A0)2/2)da,
then

nt = exp
✓

aaXt � 1
2

a2
a

2t
◆

n0

is a Gaussian with respect to a, and to compute its parameters, we rewrite it in the form

nt = C exp(�lt(a � At)
2/2).

Identifying the terms, it follows that

lt/2 = l0/2 + a

2t/2, and Atlt = l0A0 + aXt,
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so that

(1.3) dlt = a

2 dt.

Converging to a Dirac mass implies that the Gaussian is tightened, which means that
lt ! • when t ! •. Note that equation (1.3) implies that the concentration towards the
Dirac mass is increasingly fast when a is large. Moreover, we have that

dAt = (at/lt)dXt � (aXt/l

2
t )dlt.

Note that, in the last equation, it is not clear why the correct center is recovered.

Example 1.2 (Discrete distributions ). Assume that the initial assumption is given by

µ0 =
k

Â
i=1

µidai ,

so that one can write µt and nt on the following form,

µt =
k

Â
i=1

µi,tdai , and nt =
k

Â
i=1

nt,idai .

In this case, we simply have

dnt,i = nt,iatai dXt for any 1  i  k.

We reduce the problem to a problem of finite dimension k.

In these two particular cases the evolution of nt and µt is reduced to a finite-dimensional
evolution. We shall now start look at the learning issue : do we have a learning process?
What happens if we make bad assumptions initially?

1.1.1. Do we have a learning process ? Assume that at ⌘ a 6= 0 is a constant and consider
the following dynamics,

Xt = aĀt + Wt + x.

By equation (1.1) we have that

µt =
µ0 exp(aaXt � 1/2a2

a

2t)R
µ0(b) exp(baXt � 1/2b2

a

2t)db
,

so that

µt =
µ0 exp(�1/2(a � Ā)2

a

2t + aaWt)R
µ0(b) exp(�1/2(b � Ā)2

a

2t + baWt)db
.

We are interested in long-time behavior. Given that Wt/t ! 0 a.s, the t-terms will be
preponderant when t ! +•. The following Lemma gives the main results on the long
time behavior.

Lemma 1.3. If Ā 2 supp(n0) then we have that µt * dĀ when t ! +•. In general, Supp(µt)
concentrates on

argmin{|a � Ā| | a 2 Suppµ0}.

In the case of one dimension, we have two possibilities :
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- if there exists a unique minimum point denoted A• then µt * dA• . (We converge to the
nearest point of the support. We may have made incorrect assumptions, but we try to correct them
at best.);

- otherwise, if we asumme Ā = 0 (for simplicity) and start for instance with

n0 = qd�a0 + (1 � q)da0

where a0 > 0, then µt converges in law to 1/2d�a0 + 1/2da0 . The convergence in law is in the
sense that µt is a stochastic measure. In other words, it is the convergence in law on measures;

The above convergence result does not inform us about the learning speed and rela-
tionship with effort. Note also that this result illustrates the strong dependence of the
asymptotic behavior on the initial distribution. In fact, in the last example, a slight mod-
ification of the position of the two points changes completely the result.

Example:
(1) Assume that µ0 = Âk

i=1 qidai , where 0 < qi < 1, and |A � ai| = r. In this par-
ticular case, the convergence depends on the sign of the scalar product ha.Wti, so
the result will depend on the directions of Wt. We infer that the result will de-
pend strongly on the distribution of points on the sphere. In that case, one has a
convergence in law towards

k

Â
i=1

q

•
i dai ,

where q

•
i is defined geometrically according to the proportions of angles that en-

sures the right directions.
(2) Assume that the initial distribution is given by µ0 = d

∂B(A,r). In this case, and
by rotation invariance, we converge in law to the same initial distribution, i.e.
d

∂B(A,r).

Remark 1.4 (on learning speed). Assume that we have a Gaussian distribution with at ⌘
a 6= 0. For simplicity, we do the computations in the one dimensional case. The final
results hold for higher dimensions. Assume that

n0 =
e�(a�A0)2/2l0

(2p/l0)1/2 .

In this case nt is a Gaussian characterized by its mean and its variance. Using the compu-
tations of Example 1.1, it follows that

lt = l0 + a

2t.

Hence, the parameter a

2 characterizes the speed of concentration of the measure. In
addition, according to Example 1.1 we have that

Atlt = aXt + A0l0,

so that,

At =
A0l0

lt
+

a

2At
lt

+
aWt

lt
.
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Hence,

(1.4) At = A +
l0(A0 � A)

l0 + a

2t
+

a

l0 + a

2t
Wt.

Note that the last term on the right hand side of (1.4), behaves like |Wt|/at, which is a
typical quantity of learning errors, highly oscillating and there are trajectories where it is
slow. Notice finally that taking large values for a speeds up the convergence, and that
the characteristic time of concentration (around the point) is multiplied by a while the
characteristic time of convergence of the variance is multiplied by a

2.

1.1.2. Stochastic control. We now address questions related to the optimization process.
The naive approach. By drawing a randomly on the probability µt, we consider the

following dynamics of xt,

(1.5) dxt = aat dt + dWt.

The link between the equations is explained by the following: In a time interval (t, t+ dt),
we draw a according to the law µt which gives xt according to (1.5). On the other hand,
xt provides µt = nt/

R
nt through dnt(z) = z atnt dxt. We consider, for instance the

following control problem in infinite horizon:

E

Z Z •

0
e�rtL(xa

t , at)dµt(a)
�

,

where r > 0, and we are looking for a control at = a(xt) which does not depend on
a. Now, the two aspects of optimization and learning are coupled. Note that this is not
a problem that can easily be formulated in terms of dynamic programming. To write a
stochastic control problem, we need to use Girsanov Theorem. One feels like making a
dirty version of stochastic control with partial information. This brings us to abandon
this naive approach.

Partial information approach. We consider the same process xt given by the same
dynamics (1.5). We assume that at is adapted to the following filtration

Ft := s{xs | 0  s  t}.

We are interested in the following stochastic control problem:

min
at

J := min
at

E

Z •

0
e�rtL(xt, at)dt

�
,

where r > 0. We start by making a change of probability through Girsanov’s theorem to
absorb the drift :

J = E

Z •

0
e�rtL(xt, at) exp(A

Z t

0
as dWs � (A2/2)

Z t

0
a

2
s ds)

�
.

Under this new probability,
dxt = dWt,

and in addition,

J = E

Z •

0
e�rtL(xt, at)E

h
eA

R t
0 as dWs�(A2/2)

R t
0 a

2
s ds

��� Ft

i�
.
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Now we use the idea of Zakaı̈ in this particular case, by introducing a positive measure
ft(a) (where f0 is a given probability measure) which is defined as follows,

8j 2 C•,
Z

j(a) ft(a) := E
h

j(A)eA
R t

0 as dWs�(A2/2)
R t

0 a

2
s ds

��� Ft

i
.

The expression on the right hand side clearly defines a positive linear form and there-
fore the existence and uniqueness of ft is ensured. Now using Zakaı̈’s1 approach in this
particular case, one gets an evolution of ft according to the following equation

(1.6) d ft = a ftat dWt.

In particular, we have that

ft = f0 exp
✓

a
Z t

0
as dWs � (a2/2)

Z t

0
a

2
s ds

◆
,

and the optimal control problem takes the form :

(1.7) inf
a2Ft

J(x0, f0, a) := inf
a2Ft

E

Z •

0
e�rtL(xt, at)

Z
ft

�
,

where a 2 Ft means that the process at is adapted to Ft. Note that (1.7) is a usual Bellman
problem, but with variables x and f , where f is a positive measure.

We now give a formal justification of equation (1.6). For any smooth function j, we
haveZ

j(A) ft+h =

E


j(A) exp

✓
A
Z t

0
as dWs � A2

2

Z t

0
a

2
s ds

◆
exp

✓
A
Z t+h

t
as dWs � A2

2

Z t+h

t
a

2
s ds

◆ ��� Ft

�
.

Using an asymptotic expansion, we infer that

exp
✓

A
Z t+h

t
as dWs � A2

2

Z t+h

t
a

2
s ds

◆
⇠ exp

✓
Aat(Wt+h � Wt)� A2

2
a

2
t h
◆

⇠ 1 + Aat(Wt+h � Wt).

The last expansion can be rigorously justified by using Itô’s formula instead of asymptotic
expansions. It follows that,

Z
j(A) ft+h = E


j(A) exp

✓
A
Z t

0
as dWs � A2

2

Z t

0
a

2
s ds

◆ ���Ft+h

�

+at(Wt+h � Wt)E


j(A)A exp

✓
A
Z t

0
as dWs � A2

2

Z t

0
a

2
s ds

◆ ���Ft+h

�
.

Using the fact that the information between t and t + h plays no role for the first term in
the above expression, we infer that

Z
j(A) ft+h = E


j(A) exp

✓
A
Z t

0
as dWs � A2

2

Z t

0
a

2
s ds

◆ ���Ft

�

+at(Wt+h � Wt)E


j(A)A exp

✓
A
Z t

0
as dWs � A2

2

Z t

0
a

2
s ds

◆ ���Ft

�
,

1There is another approach called Kushner’s approach, which consists to looking at ft/
R

ft.
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so that Z
j(A) ft+h =

Z
j(A) ft + at(Wt+h � Wt)

Z
aj(A) ft,

and finally,
ft+h = ft + at(Wt+h � Wt)a ft.

For the control problem (1.7), we expect to have an HJB equation which has the follow-
ing form

(1.8) rV + sup
a

⇢
�1

2
DV � 1

2
∂

2V
∂ f 2 (aa f , aa f )�

⌧
∂

2V
∂x∂ f

, aa f
�
�L(x, a)

Z
f
�

= 0,

where the unknown is the function V(x, f ) where x 2 Rd and f 2 L1, L2...
Reduction to finite dimension. Recall that in the case of a Gaussian, the state of the

system is characterized through the functions,

dlt = a

2
t dt, d(lt At) = at dWt, and dXt = dWt.

More precisely, the state of the system is of dimension d + 2 (of dimension 3 if d = 1).
Similarly, recall that in the case of discrete distribution f0 = Âk

i=1 yidai , the function f (t)
can also be written as ft = Âk

i=1 yi(t)dai , and we have a very simple evolution for the yi,
which is

dyi = aiaiyi dWt.

We thus obtain a reduction in finite dimension: k + d.
In general, we prove that the HJB problem (1.7) is a problem of dimension 3 (if d = 1).

In fact, set

zt =
Z t

0
as ds, lt =

Z t

0
a

2
s ds

and

Y(zt, lt) :=
Z

f0 exp
✓

azt � a2

2
lt

◆
=

Z
ft.

We start by giving some properties of the function Y.

Remark 1.5 (on the function Y). Let

Y(z, l) =
Z

eaz� a2
2 l f0

If f0 is a probability measure, then Y > 0, it is decreasing with respect to l (i.e. ∂

l

Y < 0),
convex with respect to a (i.e. ∂zzY > 0) and we have the following:

∂zzY =
Z

a2eaz� a2
2 l f0,

and

∂

l

Y = �1
2

Z
a2eaz� a2

2 l f0.

We infer in particular that

∂

l

Y +
1
2

∂z,zY = 0.
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With the above formalism we can completely rewrite our problem of stochastic control
in this particular case in the following form,

inf
a2F

E

Z •

0
e�rtL(xt, lt)Y(zt, lt)

�
,

dxt = dWt, x0 = x,

dzt = at dWt, z0 = z,

and
dlt = a

2
t dt, l0 = l.

A standard stochastic control problem is thus recovered. Note that this formalism
generalizes the Gaussian case, and the only advantage in the Gaussian case is that we
can explicitly compute the corresponding function Y. Now, the equation HJB written in
(1.8) is reduced to dimension 3:

rV + sup
a

⇢
�1

2
∂xxV � a

2

2
∂zzV � a ∂xzV � a

2
∂

l

V + L(x, a)Y(z, l)

�
= 0.

However, this simplification leads to an additional mathematical difficulty. Let us take
an example to illustrate this difficulty.

Example 1.6. If L ⌘ 0, then V ⌘ 0 is a solution. However, by taking V ⌘ Y (and forget
about the first part of the equation) we see that this choice cancels the part with “sup

a

”
in the equation, thanks to the properties of the function Y described in Remark 1.5. Thus
Y is in the kernel of the equation.

We infer that there is basically non-uniqueness for the equation HJB (with reduced
dimension). For this purpose, we will normalize the function in the hope to recover the
uniqueness. The idea is to perform the following change of the unknown function:

V = Y(z, l)U.

Hence, one gets an equation for U by dividing by Y > 0 :

H(U, Y) + rU � 1
2

∂xxU = 0,

where

H(U, Y) = sup
a

⇢
�a

2

2
∂zzU � a

2
∂

l

U � a ∂xzU � a

2 ∂zY
Y

∂

l

U � a

∂zY
Y

∂xU � L(x, a)

�
.

Now, the causes of the unbounded character have been reduced. However, a term ap-
peared in two places in the expression above, which is

F(Y) := ∂z {ln(Y)} ,

could possibly be the cause of the unbounded character. If we look for a 2 D with
bounded D, it is possible to apply the general results of the classical theory of HJB equa-
tions. Under natural assumptions, we can have a unique solution to this equation pro-
vided that F(Y) has a linear growth with respect to z. This will depend on f0, and more
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precisely on its confinement. For example, if f0 has a compact support, the desired prop-
erty is satisfied. Another interesting example is when f0 ⇠ e� d

2 a2 at infinity. For this
example, we have formally (for l = 0),

Y(z, l) =
Z

e�k(a�z/k)2/2e
z2
2k .

In that case, we have that

F(Y) = z/k,

which is a limit case, to get the linear growth assumption.
Note that we are in situations where we can pay to learn. There are situations where

paying for learning is not quite expensive enough. Hence, one can learn immediately
through a violent transition, then we get a problem of standard stochastic control. This
violent transition is typical of what is called singular control.

1.1.3. Stochastic control with partial information : the general case. We consider a situation
where we observe only a part of a general stochastic system. Consider the following
general system

8
><

>:

dXt = s(Xt, Yt, at) (dWt + b(Xt, Yt, at)dt) ,

dYt = g(Xt, Yt, at) (dWt + b(Xt, Yt, at)dt) + d(Xt, Yt, at)dZt + b(Xt, Yt, at)dt,

where W and Z are independent Brownian motions.
Assume that a is adapted to the s-field generated by X up to time t, which we note

a 2 FX.

In addition, we consider the following cost structure

J := inf
a2FX and a2D

E

Z •

0
e�rtL(Xt, Yt, at)dt

�
.

We assume that

(1.9) s does not depend on y,

so that

dXt = s(Xt, at)dWt + s(Xt, at)B(Xt, Yt, at)dt,

and we use Girsanov’s theorem to get

J := inf
a2FX

E

Z •

0
e�rt

Z
L(Xt, y, at)nt(y)dy dt

�
,

where nt is a random measure given by

8j 2 C•,
Z

j(y)nt(y)dy = E


j(Yt) exp

✓Z t

0
b dWs � 1

2

Z t

0
b2 ds

◆ ���Ft

�
.
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As for the previous cases, we aim to write an equation for nt. Using the fact that Z is
independent of Ft, we have

d
Z

jnt = E


Lj(Yt) exp

✓Z t

0
b dWs � 1

2

Z t

0
b2 ds

◆ ���Ft

�
dt

+E


bg ∂y j exp

✓Z t

0
b dWs � 1

2

Z t

0
b2 ds

◆ ���Ft

�
dt

+E


bj exp

✓Z t

0
b dWs � 1

2

Z t

0
b2 ds

◆ ���Ft

�
dWt

+E


g ∂y j exp

✓Z t

0
b dWs � 1

2

Z t

0
b2 ds

◆ ���Ft

�
dWt,

where

L :=
1
2
(g2 + d

2) ∂yy + b ∂y.

We infer that,

d
Z

jnt =

✓Z
Ljnt

◆
dt +

✓Z
g ∂y jnt

◆
dWt +

✓Z
bjnt

◆
dWt +

✓Z
bgnt ∂y j

◆
dt,

so that

(1.10) dnt = L⇤
nt dt + bn dWt � ∂y(gn)dWt � ∂y(bgn)dt.

Note that the main difference compared to Zakaı̈’s equation presented in the previous
subsection, is that here the coefficients of L depend on the control.

The first two terms in (1.10) are standard. The other terms are less standard and come
from correlations. Equation (1.10) is a parabolic equation of evolution, which is conserva-
tive. The state of the system (Xt, nt) is totally observable, so we get a classical stochastic
control problem in the variable (x, n). As for the particular case explained before, it is
possible to write the HJB equation corresponding to this problem. We will not write it
here. The aim of this section is to show how to reduce a problem, as general as we can
imagine, with partial information, to a problem of stochastic control in complete infor-
mation with an HJB equation with value function of the form V(x, n).

To ensure the wellposedness for all the equations, one needs technical hypotheses (on
the coefficients of the SDE), and also some growth hypotheses related to the structure of
the problem. Note that assumption (1.9) is structural and not only technical.

Given the results of the previous subsection, one might wonder if it is also possible
to reduce the dimension for this general system. It is necessary to have very particular
situations so that one can reduce the problem of infinite dimension to a problem of finite
dimension. More precisely, in the case where the filtering going from Yt to nt is linear,
the dimension can be reduced, and this is the case for the particular example which was
previously explained. We shall give a few examples.

Example 1.7. Assume that a 2 D (is bounded). Suppose that L(x, a) ⌘ +• if a /2 D the
supremum becomes a maximum on a 2 D. If we suppose that D is bounded and that L is
a continuous Lipschitz function in (x, a). In this situation, there exists a unique viscosity
solution V and it is Lipschitz continuous in R3.
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Example 1.8. Assume that L(x, a) = f (x) + c0a

2. The sup will be attained if

�1
2

∂zzV � ∂

l

V � c0Y  0.

It seems that this case is degenerate.

Remark 1.9 ( about the assumption (1.9)). Consider the general system described above,

dXt = s(Xt, Yt, at)dWt + b(Xt, Yt, at)dt,

where Xt is observed, at is the control and s, b known, and Yt is not observed and driven
by the following equations

dYt = g(Xt, Yt, at)dWt + d(Xt, Yt, at)dZt + b(Xt, Yt, at)dt,

where Z and W are independent, i.e.

Z ? W.

We want to come back to hypothesis (1.9) to say that if s depends on Y, this is not nec-
essarily the end of the story, but that there is a real change. The reason is that when we
observe a process, we observe its quadratic variation < Xt >. We have that d < Xt >=
s

2(Xt, Yt, at). We infer that this is not only a technical hypothesis, but when it is not
satisfied, we get a lot of information about Y.

1.2. Control of conditioned processes. We aim in this section to analyze systems that
are controlled, and where the decisions we make do not take into account a specific event
that could happen on this system. In other words, the observations are not about the
system, but about the system conditioned by the fact that we do not take into account a
event that could happen. This question is inspired by problems related to biology and
especially the interaction between the environment and the survival of species. By com-
paring experimental results with mathematical models one wonders what is observed?
Is it the process, or the process conditioned to the species not being extinct? This question
is very general, and arises in many other applications. For example, when we are young,
our decisions are generally made knowing that we will not die in the coming years. The
majority of the decisions also made by the leaders for example are made knowing that
there will not be major problems : stock crash and so on. Another example also in pol-
itics is when the candidates for example, condition all their choices to the fact that they
will not lose the election. This kind of examples are called ”bounded rationality”. Com-
pared with conventional control problems, these situations correspond to corrections and
it can therefore be considered in some sense a risk measurement. Note that in this type of
problems, there is to main cases : easy cases where the conditioning event is static, and
difficult cases where the conditioning event is dynamic 2.

In this course, we consider the specific example of a Brownian motion and we use as
a condition the fact that the Brownian motion does not touch the boundary fo a given
bounded domain, even if we know that the probability that the Brownian touches the
boundary converges exponentially fast to 1. When time increases the event is increasingly

2depends on time, for example : being or not being alive.
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rare, which means that one changes more and more violently the classical problem (the
problem without conditioning).

Example 1.10 (exit time for a Brownian motion). Let D a smooth fixed domain of Rd and
L > 0. Consider the process Xt, driven by following stochastic differential equation,

dXt = dWt + at dt, X0 = x 2 D.

We study the control problem associated to the two following criterions.
(1) We use the following optimization criterion :

min
|at|L

E (g(XT)|tx � T) = min
|at|L

E (g(XT1
tx�T))

P(tx � T)
,

where
tx = inf{s � 0

��� Xs /2 D̄}.

Given that we consider a Brownian motion, if D is bounded, we are conditioning
with respect to an event that is increasingly rare. Therefore, we expect that for t
larger and larger, we deviate more and more from the standard case.

(2) We now consider a criterion with a dynamic conditioning :

min
a2L2

w,t

Z T

0
E


f (Xt) +

1
2

a

2
t

��� tx � t
�

dt + E
⇥
g(XT)

��
tx � T

⇤
.

Note that, in the case where D = B(0, R), it is expected that when R ! • we recover
the usual control problems without conditioning.

1.2.1. Feedbacks. Consider case (1) in Example 1.10. Note that the functions u : (t, x) !
E[g(XT)1tx�T] and v : (t, x) ! E[1

tx�T] solve parabolic PDE problems of the following
type :

∂tu � 1
2

Du � aru = 0, ut=0 = g u
∂D = 0,

and v solves the same equation with vt=0 = 1. Hence, the minimization problem is of the
following form,

min
|at|L

u(x, T)/v(x, T).

Consequently, we obtain a type of control problem of parabolic equations : one mini-
mizes under a criterion that depends on solutions of two PDE problems. The optimality
system for this problem gives rise to four PDEs. By manipulating these PDEs, one realizes
that it is much better to look at the conditional law to analyze the problem.

Consider the solution p of the following PDE problem,

(1.11) ∂t p � 1
2

Dp + div(ap) = 0, pt=0 = p0, p
∂D = 0.

p0 = L(X0) 2 L1.

In that case,

E[g(XT)/1
t�T] =

R
gp(T)R
p(T)

,
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so that, the optimization problem (1) in Example 1.10 takes the following form:

(1.12) min

(✓Z
gp(T)

◆✓Z
p(T)

◆�1 .
p solves (1.11), kak•  L

)
.

We get an optimal control problem of the Fokker-Planck equation, which is in an unusual
form. Note that this is a very special case of Mean Field Games problems.

Proposition 1.11. There exists an optimal control for the problem (1.11). Moreover, for any
optimal control a, there exists u which satisfies the following problem :

� ∂tu � 1
2

Du + L|ru| = 0, u(T) = g
✓Z

p
◆�1

� c0 in D, u
∂D = 0,

where

c0 =

✓Z
gp
◆

/
✓Z

p
◆2

.

Moreover, the optimal control is given by a = �ru/|ru| if ru 6= 0, otherwise a takes any
value.

Note that the MFG coupling is coming through the final condition. Observe that this
optimality system depends on on p0 through p. In particular, if p0 is a Dirac mass (we
know exactly from where we start), then the optimal feedback depends on the starting
point. In other words, for each starting point, there is an optimal feedback among the
feedbacks.

Proof. The existence of an optimal control is standard: one takes a minimizing sequence
an which converges weakly to a for the weak ⇤ topology of L•. Then, if (pn) is the
sequence associated to (an), we get the uniform convergence (up to a subsequence) of
pn using the parabolic compactness. Hence, p solves the Fokker Planck problem for a.
The only point to be careful about, is to make sure that

R
pn does not tend to 0. So we

need lower bounds on
R

pn. This is proved using the strong maximum principle, which
provides that pn � d > 0 on all compact subsets of D.

Note that there is no convexity property which allows us to infer that the optimality
condition is sufficient. Let J(a) be the cost functional associated to this optimization
problem. We minimize on a convex domain, so optimality condition is

⌦
J0(a), b � a

↵ � 0 8|b|  L.

The adjoint state will allow us to compute J0(a) as usual. We test the optimality by look-
ing at a + hda, where h � 0 and da = b � a. Note that dp solves the linearized equation:

∂tdp � 1
2

Ddp + div(adp + (da)p) = 0, dpt=0 = 0,

and the inequality of Euler simply becomes
R

gdp(T)R
p

� (
R

dp)(
R

gp)
(
R

p)2 � 0 8|b|  L.
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To make the dependence on b � a explicit in the previous expression, we introduce the
adjoint state. We are looking for G such that

� ∂tu � 1
2

Du = G, u(T) =
gR
p
�

R
gp

(
R

p)2 .

Note that the Euler condition becomes
Z

u(T)dp(T) � 0,

and on the boundary ∂D, we will assume that u = 0. Then G is computed as follows:
Z T

0

Z

D

Z
∂t(udp) =

Z Z
ru (adp + dap)� Gdp.

We choose G = aru to get rid of the terms in dp. We infer that

0 
Z Z

rup(b � a),

so that Z Z
rupa 

Z Z
rupb

for any |a|  L and |b|  L. Thus

a = �L
ru
|ru| ,

when ru 6= 0, and if ru = 0, there is no condition.
⇤

We now consider the second case of Example 1.10, which is defined by the following
optimization criterion:

(1.13) min
a2L2

t,x

(Z T

0

R
( f + 1

2 a

2)pR
p

dt +
R

gp(T)R
p(T)

)
.

Proposition 1.12. There exists an optimal control for the problem (1.13). Moreover, for any
optimal control a, there exists a function u which satisfies,

8
>>>>>><

>>>>>>:

� ∂tu � 1
2

Du +
1
2

✓Z
p
◆
|ru|2 =

fR
p
� c(t) in D,

u(T) =
gR
p
�

R
gp

(
R

p)2 in D,

u
∂D = 0,

where

c(t) =
R
( f + 1

2 a

2)p
(
R

p)2 ,

and the optimal control is given by

a = �
✓Z

p
◆
ru.
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Note that conditioning appears only through
R

p. When
R

p = 1, we directly find the
cases of classical control. Note also that the above system is a particular MFG system.

Proof. As in the previous case, the existence of an optimal control is related to compact-
ness. However, we must pay attention to a new mathematical difficulty which is related
to the fact that a is not necessarily bounded in that case. To deal with this difficulty, we
approach the system by a better system where we take in particular a bounded.

Given the previous case, we remove the second term by taking g ⌘ 0 to simplify the
presentation. The optimality conditions are written in this case in the following form:

0 =
Z T

0

(R
( f + 1

2 a

2)dpR
p

+

R
apdaR

p
�
R

dp
R
( f + 1

2 a

2)p
(
R

p)2

)
.

Furthermore, we are looking for G1 and G2 such that,

0 =
Z Z

∂tudp + u ∂tdp = G1,

� ∂tu � 1
2

Du = aru + G2, ut=T = 0, u
∂D = 0,

and

∂tdp � 1
2

Ddp + div(adp + dap) = 0.

By integration by parts, it follows that

G1 =
Z Z

(da.ru)p � G2dp = 0.

By identification, we infer that

a = �
✓Z

p
◆
ru and G2 =

f + 1
2 a

2
R

p
� c(t).

The claimed result is obtained, by replacing the terms with their values. ⇤

What would also be interesting to do in the context of these models, is to consider the
problem as a classic dynamic programming problem plus a correction. This correction
corresponds to the risk that we did not consider in classical models, and it would be
interesting to quantify this error.

1.2.2. The limit when R ! •. Let aR, uR and pR be respectively the optimal control, the
adjoint state and the system state corresponding to D = B(0, R). According to Proposi-
tions 1.11 and 1.12, we have in the first case,

aR = �L
rũR

|rũR| ,

and in the second case

aR = �
✓Z

pR

◆
rũR.

Let
ũR = uR + cR.
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The constant cR is used to absorb all the constants in the problem. In fact, for the first
example, we have that

uR(T) =
gR
pR

�
R

gpR

(
R

pR)2 .

It is therefore quite natural to take

cR :=
R

gpR

(
R

pR)2 ,

so that for t = T,
ũR =

gR
pR

.

Note also that ũR satisfies the same equation with the following boundary condition,

� ∂tũR � 1
2

DũR + L|rũR| = 0, ũR( ∂BR) = cR.

On the other hand, pR is a solution to the FP equation which is 0 on the boundary of BR.
Hence for large R,

pR ⇠ p̃R

in the L1 sense, where p̃R is the solution on the whole space associated to aR :

∂t p̃R � 1
2

D p̃R + div(aR p̃R) = 0, p̃R(0) = p0,
Z

p̃R = 1.

In addition, for the other terms, we have a HJB equation with a bundary that tends to
infinity and the final condition for ũR tends to g. So at the limit R ! +•, we know
that we recover the equation over the whole space without boundary conditions. This
is a standard question for Bellman equations. We deduce by similar arguments that we
converge towards the following system of classical dynamic programming:

ũR ! u, p̃R ! p, aR ! a = �L
ru
|ru|

where u satisfies

� ∂tu � 1
2

Du + L|ru| = 0 in Rd, ut=T = g,

and

∂t p � 1
2

Dp + div(ap) = 0.

1.2.3. The limit T ! •. We consider the following problem,

(1.14) dXt = dWt + a(Xt)dt.

Note that all what is presented here remains satisfied in more general but non-degenerate
frameworks. Set

h(T) := E[f(XT) | t � T].

We are interested at the limit
lim

T!+•
h(T).
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If there exists p 2 P(D) such that

lim
T!+•

h(T) =
Z

fp,

and if p does not depend on X0 (as in ergodic theory), p is called a quasi-stationary mea-
sure. Note that it replaces the notion of stationary measures, but for a process conditioned
by the probability of leaving D.

Remark 1.13 (Q-processes). We consider the following quantity3,

h(t, T) := E[f(Xt) | 1
t�T].

In the case of bounded domain D, the above quantity converges (up to a subsequence by
compactness) to the law of a continuous process called the Q -process. More precisely,

lim
T0!+•

E[f(Xt) | 1
t�T0 ] = E[f(Qt)].

The process Q is defined on the compact domain and has the following ergodicity prop-
erty,

lim
t!+•

E[f(Qt)] =
Z

fp̄.

This gives another notion of quasi-stationary measures.

Thanks to the results of previous sections, note that for any T � 0,

h(T) :=
Z

fp(T)/
Z

p(T),

where p solves the forward FP equation (1.11).
Thanks to Krein-Rutman theorem4, there exists l1 > 0, and a function f1 > 0, which

is unique up to a multiplicative constant such that,

�1
2

Df1 � a.rf1 = l1f1,

and there is a unique p such that, p > 0,
R

p = 1, and

�1
2

Dp + div(ap) = l1p,

where p and f1 are zero at the boundary of the domain. Set

A := �1
2

D � a.r,

and consider the quotient u(T, x)/v(T, x) such that

∂tu + Au = 0, ut=0 = f,

∂tv + Av = 0 ut=0 = 1,
and

u = v = 0 on ∂D.
Using Krein-Rutman, we know that

u(x, t) ⇠ e�l1t
f1(x)c0,

3Note the difference with h(T).
4a generalisation of the Perron-Frobenius theorem to infinite-dimensional Banach spaces.
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where c0 is a constant which depends on initial conditions. To compute c0, we multiply
the first equation by p, and we get that

d
dt

Z
up + l1

Z
up = 0,

so that Z
up =

✓Z
u(0)p

◆
e�l1t.

We infer, according to the first ansatz that

e�l1tc0

Z
f1p =

Z
up.

Hence

c0 =

R
u(0)pR
f1p

.

One easily gets analogous results for v by replacing f1 with 1. Thus

lim
T!•

u(T, x)
v(T, x)

=

R
u0pR
p

,

so that
lim

T!•
E[j(XT) | 1

t�T] =
Z

fp.

We deduce that p is the quasi-stationary measure. Note that this result is related to the
compactness obtained by a non-degenerate operator on a bounded domain, and also to
the positivity of the operator via the Krein-Rutman Theorem.

Now, we try to understand the Q -measures to see the relationship with the object
found above. We have that,

h(t, T) =
E[f(Xt)1t�tEXt(1t>T�t)]

Ex(1
t�T)

.

Thanks to the previous considerations, we know that the right-hand side behaves like
R

u0pR
f1p

e�l1t
f1,

so that, for t large enough, the previous quantity gives

E[f(Xt)1t�tf1(Xt)]e�l1t

f1(x)
,

by normalizing
R

f1p = 1 and
R

p = 1. We now rely on the limit when T ! • to see if
there is ergodicity. We have that

lim
T!•

E[f(Xt)1t�tf1(Xt)]e�l1t

f1(x)
=

Z
ff1p.

We infer that there exists an invariant measure for the Q-process, and that this invariant
law is p̄ := f1p. Thus, in these non-degenerate frameworks, we completely identify
these notions of quasi-stationary measures by using the first eigen functions. Note that,
the two measures (in the two cases h(T) and h(t, T)) are different. This is expected, since
in the second case the conditioning is stronger.
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If we now take a feedback and consider the first problem. We can expect that the
feedback becomes stationary as T ! +•. If we assume that a is independent of time,
then formally we have that

lim
T!+•

inf
a

E[g(XT) | 1
t�T] = inf

a

Z
gp

a

.

Formally, we recover an optimization problem at the limit T ! +• which has noth-
ing to do with the conventional optimal control problems (without conditioning). This
was expected since we are conditioning with respect to events whose probability tends
exponentially fast to zero. In this example, we recover an optimal control problem in
which the first eigen function is controlled. This type of control problems have their own
interest.

In the case where there is no conditioning (framework of the classical control theory),
it is known that the control becomes independent of time because (under conditions of
ergodicity, and periodic or Neumann boundary conditions) limt!• ru(x, t) = ru•(x).
This result relies on well known strong uniqueness results. In the case of MFGs, it is
more complicated. It is therefore natural to ask the same question for general problems :
If we take the problem with a(x, t) which is a feedback on [0, T], does it converge to the
stationary problem with a(x) ?

We introduce a supplement which is a kind of generalization of the notions of station-
ary and quasi-stationary measures for cases where dependence on time is general.

1.2.4. Some remarks on stationary and quasi-stationary measures. All the results of this sub-
section can be generalized to a general non-degenerate framework. It is well known that
the law of a process satisfying a SDE of the form (1.14) with a depending also on t, satis-
fies the following problem:

∂t p � 1
2

Dp + div(a(t, x)p) = 0, pt=0 = p0

Z
p = 1.

To simplify, we shall take periodic boundary conditions. Now we want to take the
limit as t ! +• to see what happens. Note that the coefficients are any a 2 L•

t,x. We take
a sequence of time (tn) such that limn tn = +•, and

a(tn + t, x) * ā(t, x) 2 L•(Rt ⇥ Qx).

We aim at constructing a sliding window, in order to understand if it is possible to con-
struct examples where there is no global stabilization of the measure. We will see that
there exists a unique regular p̄ > 0 such that

R
p̄(t) = 1, for all t 2 R and which satsfies

p(tn + t, x) ! p̄(t, x),

where the convergence above is uniform in x and bounded t. Note that uniqueness in-
sures that p̄ inherit all the properties of ā. Namely, if a is constant, then p̄ is constant, and
if a is periodic, then p̄ is periodic, and so on. The function p̄ is an object that strongly
encodes all the properties of the coefficients that are defined on the whole real line R.
The question that now naturally arises is the following : in the case where a depends on
t and x, do we have analogues function of first eigen function (relatively to the previous
case above)?
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There exists a unique couple ( p̄, l̄) such that
R

p̄ = 1 for all t 2 R, and
R t

0 l̄(s)ds is
stuck between two linear functions that intersect in 0, such that

∂t p̄ � 1
2

D p̄ + div(ā p̄) = l̄(t) p̄ 8t 2 R, 8x 2 Q p̄ > 0,

and there exists a unique f1 such that

∂tf1 � 1
2

Df1 � ārf1 = l̄f1, f1 > 0, max f1 = 1, f1( ∂D) = 0.

This is a strange notion that, in this case, generalizes perfectly the notion of first proper
function. It’s not an eigen function, because there is no compactness and we work on the
whole real line.

If we now recall the problem of stochastic control of conditioned processes, what we
know is that when T ! +• the stochastic control problem has the following form:

(1.15) min
a2W

⇢Z
gp(x)

�
,

where W is the set of functions a(t, x) 2 L•(Rt ⇥ D) such that there exists s 2 R with
p = p(s, x) and p satisfies the problem

∂t p � 1
2

Dp + div(ap) = 0, p > 0,
Z

p = 1, p
∂D = 0.

Saying that the feedback becomes stationary, means that the quantity (1.15) remains ex-
actly the same if we take the minimum over functions a depending only on x.

1.2.5. Generalizations of stationary measures. We consider the following problem :

∂t p + A⇤p = 0, pt=0 = p0 � 0.

where

A := �1
2

D � b.r
and assume that b 2 L•. The notion of stationary measure is clear when we have suitable
boundary conditions that make this object exist. In the framework of a bounded domain
with Dirichlet conditions, then limt!+• p = 0 because all the mass ends up leaving from
the boundary. On the other hand, whith periodic, or Neumann conditions ( ∂p

∂n = 0 on
∂D) and if D is open bounded and regular, the mass is preserved, because all the mass is
reflected on the boundary.

We know that in the case where b depends only on x, there exists a unique measure
p̄ > 0 that satisfies A⇤ p̄ = 0 and which satisfies the same boundary conditions (implying
that

R
p̄ = 1).

Remark 1.14. The last results holds in a more general framework. In fact, the result holds
for operators of the form:

�1
2

∂i,j(ai,j.)� ∂i(bi.)

with b depending only on x, with possibly jump terms.
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What we want to look at now is the case where the coefficient b also depends on t.
Let (tn) be a sequence such that limn tn = +• and consider the sequence b(tn + s, x),
for a given s 2 R and x 2 Q. Since b 2 L•

t,x, one can always infer that b(tn + s, x)
converges weakly ⇤ in L• to b(s, x) 2 L•. Hence, by compactness one can infer that
p(tn + t, x) converges weakly (up to a subsequence) to a function p(t, x), which satisfies
the following problem,

∂t p + A⇤p = 0 x 2 Q, t 2 R,
Z

p(t) = 1.

Moreover, using the maximum principle, we have that

p � 0 ) p > 0.

Thus, we get a notion which replaces the notion of stationary measure since the limit is a
zero of the ”eternal” operator. Note also that this object is unique, and fully characterized
by the coefficients. The following result collects the above statements.

Theorem 1.15. If b 2 L•(Rt ⇥ Q), then there exists a unique solution p to the problem

∂t p + A⇤p = 0,
Z

p = 1, p � 0 8t 2 R.

Corollary 1.16. If b(tn + ., .) converges weakly ⇤ in L• to b, then p(tn.., .) converges weakly to
p.

The following corollary shows that p inherits all the properties related to time of the
coefficients.

Corollary 1.17. i) If b(t, x) ! b(x) then p(t, x) ! p(x) which is the stationary solution of
A⇤p = 0.

ii) If b(t, x) ! b with b periodic, then p(t, x) ! p which is also periodic.
iii) We have the same result if b is almost periodic and so on.

The last two results are easily deduced by uniqueness, so we only prove the first theo-
rem.

Proof. The proof relies on duality arguments. Existence: we consider the sequence (pn)
defined as the solution of the following problem

∂t pn + A⇤pn = 0, t � �n, x 2 Q, pn,t=�n = p0,

where
R

p0 = 1
⇣

for instance p0 = 1
|Q|
⌘

. We get compactness using parabolic estimates,
and therefore there exists a sequence pn0 which converges to a solution of the problem.

Uniqueness: Consider two solutions p1, p2 and set f ⌘ p1 � p2. We have that
R

f = 0
and

R | f |  2. Moreover, f satisfies the following problem,

∂t f + A⇤ f = 0.

To use a duality argument, we introduce the solution of the following backward problem,

� ∂tu + A⇤u = 0 on [�T, 0] ut=0 = u0 2 C•.
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Up to a time translation, we aim to prove that ft=0 ⌘ 0. We have that,

d
dt

Z
u f =

Z
Au f � uA⇤ f = 0.

Therefore, we have in particular,
Z

u0 f (0) =
Z

u(T) f (�T).

Lemma 1.18. The oscillation of u(t) is bounded by c0e�rt Osc(u0), i.e

9r > 0, 9c0 � 0, 8u0, 8t 2 [�T, 0], Osc(u(t))  c0e�rt Osc(u0),

where Osc( f ) is the oscillation of the funciton f .

This Lemma is proved by showing that

8d > 0, 9q 2 (0, 1) such that Osc(u(�d))  q Osc(u0).

using the strong maximum principal and compactness. Using now Lemma 1.18 we infer
that ����

Z
u(T) f (�T)

����  Osc(u(�T))
Z

| f |  2 Osc(u(�T)) ! 0

when t ! +•, and hence we get the claimed result. ⇤

The results presented above are already known in the litterature. Now, we are going
to look at a situation that is a bit more tricky and concerns the Q-stationary measures.

1.2.6. Dirichlet conditions and Q-stationary measures. Consider a function b which depends
only on x for the moment and consider the following problem

∂tu � 1
2

Du � b.ru = 0, in D, u
∂D = 0 ut=0 = u0,

where D is an open, regular, and bounded set of Rd. We know that the solution of this
problem tends exponentially fast to zero. Moreover, we know by Krein-Rutman Theorem
that there exists a unique function j > 0 which satisfies Aj = l1j in D, and j

∂D = 0
with l1 > 0. Note that this result is very general and relies on the fact that the operator
A�1 is compact in the usual spaces (L2, C, ...), and on the maximum principle.

If |u0|  C0 j, then using the maximum principle we infer that

|u(t)|  C0e�l1t
j,

where j is the first eigen function. Now we compute the constant C0 using Krein-
Rutman’s Theorem for A⇤ : we know that there exists a unique function p̄ such that

A⇤ p̄ = l1 p̄, p̄ > 0, and p̄
∂D = 0.

Thus,
d
dt

Z
up̄ + l1

Z
up̄ = 0,

so that, Z ⇣
u(t)el1t

⌘
p̄ =

Z
u0 p̄.
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At the limit, we infer that

C0

Z
j p̄ =

Z
u0 p̄.

Hence

C0 =

R
u0 p̄R
j p̄

.

We deduce that the the good normalization to take is the following
Z

p̄ = 1, and
Z

j p̄ = 1.

If we write the corresponding Kolmogorov equation, we have that

∂t p � 1
2

Dp + div(bp) = 0, p
∂D = 0 and pt=0 = p0.

If we interpret the above results, we infer that

lim
t!+•

p(t)el1t =

R
p0jR
p̄j

p̄,

where the convergence is uniform.
We now address the case where b depends also on t. Given what we did before, this

situation arises naturally when we write control problems for conditioned processes (b
plays to role of the control).

We want to keep the notion of eternal solution. As we did before, consider a sequence
(tn) such that limn tn = +•. We know that b(tn + t, x) converges in L•

t,x to a function
b as n ! • (up to a subsequence). We want to create an eternal solution, however in
that case everything vanishes quickly towards 0. Hence, we need to introduce a suitable
normalization to keep some information. Let

pn(t, x) = p(tn + t, x),

and consider
p̃n := jn(t)pn(t, x),

where jn is chosen such that Z
p̃n = 1.

We infer that p̃n satisfies the following problem,

∂t p̃n + Ap̃n = ln p̃n, p̃n � 0,
Z

p̃n = 1, 8t � 0

with
p̃n, ∂D = 0, and ln(t) = j

0
n(t).

We have that

jn =

✓Z
pn

◆�1
,

so that

j

0
n = � 1

�R
pn
�2

✓
d
dt

Z
pn

◆
.
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So if we write an equation we have

d
dt

Z
pn � 1

2

Z

∂D

∂pn

∂n

dS = 0.

Since p is positive and satisfies p
∂D = 0, then according to Hopf’s maximum principle,

we have that
1
2

Z

∂D

∂pn

∂n

dS < 0,

and so

j

0
n > 0.

This allows us to understand why (ln) remains bounded. We write ln as a function of
p̃n. In fact, we have (with the same computation as above)

ln =
Z

∂D

✓
� ∂ p̃n

∂n

◆
dS.

We infer formally, that at the limit n ! •, we get the following problem,

∂t p + A⇤p = lp, (t, x) 2 R ⇥ D

and

p
∂D = 0, l � 0, and

Z
p = 1, 8t 2 R.

We proved formally that we obtain the equivalent of stationary measures, that we have
studied in the classical case, except that now the eigenvalues are different for different
function b, and therefore the l is not necessarily constant.

In the following result, we prove uniqueness of p and l, and get a kind of generaliza-
tion of the notion of eigenvalue.

Theorem 1.19. Let b 2 L•(Rt, Rx), then there exists a unique pair (p, l), such that

∂t p + A⇤p = lp, x 2 D, t 2 R,

p � 0, in D, and
Z

p(t) = 1, 8t 2 R.

Applications of Theorem 1.19. We recall in the case of feedbacks stochastic control prob-
lems that we have found in the two cases of Example 1.10 the following results:

i) In the first case we have the following optimization problem,

E1 := min
⇢R

p(T)gR
p(T)

/ |a(t, x)|  L, ∂t p � 1
2

Dp + div(ap) = 0, p
∂D = 0, pt=0 = p0

�
.

ii) In the second case, we have the following optimization problem,

E2 := min

(R
( 1

2 |a|2 + f )p(t)R
p(t)

dt / ∂t p � 1
2

Dp + div(ap) = 0, p
∂D = 0, pt=0 = p0

)
.
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The question we now ask is: what is the limit problem as T ! • ? Consider the
example (i). If the optimal control becomes independent of time, then the limit problem
is the following,

min
⇢Z

p•g / |a(x)|  L, �1
2

Dp• + div(ap•) = lp•, l 2 R,
Z

p = 1, p
∂D = 0

�
.

This is a well known MFG problem which has a unique solution. Note that, we started
from a problem which doesn’t have necessarily a unique solution. On the other hand, for
the example (ii), we can expect that 1

T E2(T) converges to the following expression

min
⇢Z ✓

1
2
|a|2 + f

◆
p• / � 1

2
Dp• + div(ap•) = lp•,

Z
p• = 1, p•, ∂D = 0

�
.

Using the results of the previous sections, one checks that the optimality condition in that
case is given by,

a = �ru,
where u is defined by the following problem,

�1
2

Du +
1
2
|ru|2 = lu + f � c,

Z
u = 0,

�1
2

Dp• + div(ap•) = lp•,
Z

p• = 1, p• � 0,

and
u = p• = 0 on ∂D,

where c 2 R. The above problem is a stationary MFG system. One can show that there
exists a unique solution to this problem, at least for small f . Note also that in case (ii), the
functional of the limit problem is convex in a. Thus obviously the optimization problem
has a unique solution. This is not the case for the original functional (before taking the
limit T ! +•).

Consider now the example (i) at the limit T ! +•, without the assumption that a

becomes independent of t. One checks that the first optimization problem converges to
the following optimization problem

inf
a,p

Z
p(0)g,

where the infimum is taken over |a(t, x)|  L, and p satisfying

∂t p � 1
2

Dp + div(ap) = lp, p � 0, p
∂D = 0,

Z
p = 1, l 2 R.

To show this result, it is enough to put the origin of time in T. The control a remains
arbitrary and is defined for any time. On the other hand, the function p is defined for
all time, and normalized. Hence, it converges to the unique solution of the theorem. We
deduce that we recover the same problem, except that in place of the stationary measure,
we will have the value at 0 of the generalization of stationary measures that we already
pointed out.

Now we want to know if the minimum of the problem above is independent of time,
which will show that the above problem is the right problem. To prove that the minimum
is independent of time, it is enough to check that the minimum is unique. In fact, if there
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is a unique minimum, the invariance by time translation proves that the minimum must
be independent of time. In other words, if we have uniqueness (convex problem) then
aopti(. + s) is still optimal, which implies that aopti is independent of time. We now give
the uniqueness for Theorem 1.19.

Proof of Theorem 1.19. Consider two solutions (p, l) and (q, µ). We shall first reduce to the
case µ = l, by constructing a solution which is not normalized, but which has the same
time depending eigenvalue. Then we conclude that the new p and the q transformed are
equal. In other words, using a suitable transformation we consider a solution (q̃, l) (in
this case we may have

R
q̃ 6= 1). Then, prove that p ⌘ q̃ and thus

R
p = 1 =

R
q̃, which

gives the claimed result. We start with the following observation: if we have a solution
(p, l), we can find an eternal solution (u, l) for the following dual problem

� ∂tu + Au = lu, u > 0, u
∂D = 0,

such that Z
up = 1, 8t 2 R.

This result is not difficult to have because for this l we have that,

(1.16)
d
dt

Z
up = 0.

In fact, identity (1.16) allows us to prove some bounds. To get the existence of an eternal
solution, we solve the problem on (�•, T), T > 0 and we take the limit as T ! +•.
Hence, identity (1.16) is almost an L1 bound, and we conclude the proof using duality
and approximation techniques. On other hand, taking the same u we have that

d
dt

Z
uq = (µ � l)

Z
uq,

so that
Z

u(t)q(t) = exp
✓Z t

s
(µ(s)� l(s))ds

◆ Z
u(s)q(s).

Since the function w ! R
u(w)q(w) is uniformly bounded, we infer that

R t
s (µ(s) �

l(s))ds is bounded independently of s and t. Hence, if

q̃(t) = q(t) exp
✓Z t

0
(l(s)� µ(s))ds

◆
,

we may have
R

q̃ 6= 1, however q̃ satisfies the following problem,

∂tq̃ + Aq̃ = lq̃,

and moreover q̃ is bounded for all t � 0. Now we will use an argument of L.Tartar. The
idea is to introduce the following object

f =
p

pq̃.
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If now we look at the equation satisfied by f , we have that

∂t f + A f � l f =
1
2
( ∂t p + Ap)

s
q̃
p
� l f +

1
2
( ∂tq̃ + Aq̃)

r
p
q̃
+

1
2
|rp|2

p
q̃

(
pp)3

+
1
2
|rq̃|2

pp
(
p

q̃)3 �rp.rq̃.
1p
pq̃

By concavity, we can easily deduce the sign of the terms on the right hand side. After
simplification we have that

∂t f + A f = l f + G

where
G = 2

p
pq̃|rp

p �rp
q̃|2 � 0

is the dissipation term. The next step is to notice that

d
dt

Z
u f =

Z
uG,

so that Z +•

�•

Z
uG < •.

Taking into account the sign of the function, we infer that

lim
t!�•

Z
uG = 0,

which implies that G tends to 0 and consequently

lim
t!�•

rp
p �rp

q̃ = 0

This is how we get an information that tells us that p and q̃ are close as t ! �•. Since
the two functions are zero on the boundary, we infer that

lim
t!�•

k(p � q̃)(t)kL1 = 0.

Then, thanks to the maximum principle and the normalization of the mass we get that

lim
t!�•

sup
s��t

kp(s)� q̃(s)kL1 = 0,

and so
p(s) ⌘ q̃(s), 8s 2 R.

⇤

1.2.7. The control of processes conditioned by an event A. Note that the conditioning consid-
ered in the previous subsections is a particularly complicated case. In fact, in the previous
cases, the conditioning event depends on the entire trajectory, changes with time, and is
a related to the control. We now consider a case where the process is conditioned with
respect to a given event A.

Consider the following dynamics,

dXt = at dt + dWt,
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where Wt is a Brownian motion and at is a control adapted to the s-field generated by
(Wt). We consider the following cost function,

J := E

Z T

0

✓
1
2
|at|2 + f (xt)

◆
dt

��� A
�
=

E
h⇣R T

0
� 1

2 |at|2 + f (xt)
�

dt
⌘

1A

i

P(A)
.

A trivial case is when the event A is independent of W and X. In this case, the con-
ditioning does not affect the control problem. Mathematically, the cost function simply
becomes

J = E

Z T

0

✓
1
2
|at|2 + f (xt)

◆
dt
�

.

Hence, the interesting case is when we have correlations. Let us consider the following
special case

1A = 1A0(YT),

where A0 is a given set, and Yt is another stochastic process which satisfies a stochastic
equation of the form

(1.17) dYt = (...)dBt,

so that correlations can be expressed through the dynamic. The dynamics (1.17) could be
complex, but Bt is a Brownian motion. In order the avoid the trivial case, we assume that
Bt and Wt have the following correlation

[dWt, dBt] = r dt.

Note that a simpler case is when P(A) does not depend on the control. The most impor-
tant quantity to understand in that case is the following,

inf
at

E

✓Z T

0

✓
1
2
|at|2 + f (xt)

◆
dt
◆

1A0(BT)

�
.

This problem can be reduced to a standard stochastic control problem with more vari-
ables. In fact, we can write (at least in law),

Bt = rWt +
q

1 � r

2Zt, Z ? W.

In this case we can reduce the size of the problem by considering the following function,

f(x) := Ez


1A

✓
rx +

q
1 � r

2ZT

◆�
.

Now we can handle this case exactly as the exit times problems, introducing conditioning
laws.

We consider the following simple example to simplify the presentation,

inf J := inf
|at|L

E
⇥
g(XT)

�� A
⇤

.

The quantity we are interested in is

E [g(XT)1A0(YT)]
E[1A0(YT)]

,
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and there is a coupled system of the form

(dXt, dYt) = (.....)(dWt, dBt) + (...)dt, [dWt, dBt] = r dt.

In this case there may be coupling, and strong correlations with a, so that we can be
very close to the situation of exit times (where the coupling is very strong). As for the
case of exit times, we can interpret this by the joint law of (x, y). We thus find the same
equations, except that we have no boundary conditions since there is no exit time. We
get instead an equation on the whole space (or with periodic conditions). Hence, if we
consider a of feedback type, the minimization problem takes the following form:

inf
|a|L

R R
q(x, y, T)g(x)1A0(y)dx dyR R

q(x, y, T)1A0(y)dx dy
.

Moreover, if L is the generator of the process (X, Y), then q satisfies

∂tq + L⇤q = 0, qt=0 = q0 (the initial law).

Again, we find a control problem for the Fokker-Planck equation under the above con-
straints, which is exactly what we found in the case of exit times. We infer that the math-
ematical formalism introduced for the conditioning problems with exit time is robust.

2. INTERFACES AND JUNCTIONS

Interface problems are problems where we have two different equations in two distinct
regions of space. Junction problems are situations where we have different branches that
join at a point, and where we have an equation on each branch. In general, this kind
of problems are idealizations of reality, and from a mathematical point of view, they are
limits of problems which are well posed in natural spaces.

equation 1 equation 2

O

equatio
n 1

equation 2

equation 3

equation
i

O

Interface problem Junction problem
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The above drawings illustrate interface problems and junction problems in the one
dimensional case. These situations are generalized to spaces of superior dimension con-
sidering plans or hyper surfaces. The junction point becomes a junction line and so on.
This kind of problems typically appear in the study of networks, traffic flow and also in
economy.

To illustrate the fact that junction problems are limits of well posed problems, we con-
sider an example from electrostatics on electrical wires. Writing the laws governing the
system, we find equations with Laplacien operator on a domain of R3 and which has as
a parameter the thickness e of the wire. The junction problem is obtained by taking the
limit when e tends to 0. One recovers in particular Kirchhoff law at the junction point
under the hypothesis that all the wires have the same diameter. Without this hypothesis
we find an analogous law, obtained by multiplying the currents by the related weight of
the diameters.

All the equation considered in this section are stationary. In the time dependent case,
we should also pay attention to the evolution of the interface in time: if the interface
surface is deformed with time or not. We want to develop methods that work in the
same way when the deformation of the interface in time is known, and the behaviors
will be different according to the equations we have. One can have equations where the
analysis is based on the maximum principle, and therefore mathematically, on viscosity
solutions. One can also have conservative equations and nonlinear conservation laws.
However, we didn’t studied yet the case of propagation phenomenons. But, we believe
that this case can be managed if we manage correctly the associated elliptic operator.

2e

equatio
n 1

equation 2

equation 3

equation
i

O

The initial problem (for instance in R3) The limit problem e ! 0

2.1. Nonlinear elliptic systems of second order. We start with the case of fully nonlin-
ear elliptic systems of second order, and we will look at junction situations, where the
junction point is 0. We consider the following junction problem,
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x 1

x2

x3

x
i

O

with i branches, and we consider the following equation on each branch,

(2.1) Fi(xi, ∂xi u, ∂

2
xi

u) + u = f (xi), xi < 0,

where Fi(x, p, z) and f are regular functions and we have for all (x, p, z),

(2.2) �µ  ∂zFi  �n < 0, µ, n > 0.

The natural question that arises is the following: what is the condition that we must chose
in O in order to have a well posed problem on all the junction?

For a given {ui(0)}1ik, the problem is decoupled and we get a unique solution in C2,1

on each branch. In other words, the set of solutions is parameterized by the k variables
{ui(0)}1ik. We will restrict ourselves to the following situation:

u1(0) = ...... = uk(0).

To fix the ideas, we start by looking at an electrostatic problem. Consider k = 4 electric
wires with a junction in O. We start by considering the problem in R3 :

x

1

x2

x3

x

4

2e

The domain S
e
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We aim to recover Kirchhoff’s law. Writing the laws of electrostatics, we find equations
of the following type,

(2.3) �Du + u = r, in S
e

,

where S
e

is the domain described by the drawing. Note that the equation written above is
itself an approximation because in general we can also have a spatial modulation, which
is very important if the wires do not have the same electrical properties. The natural
boundary condition to consider on ∂S

e

is the following :

∂u
∂n

= 0 in ∂S
e

.

Note that the term of order zero in (2.3) is added to avoid additional conditions at infinity,
which is in a normal situation a known value of the potential. It is expected that at the
limit e ! 0, one recovers four branches, and that on each branch, one has an equation of
the following form,

� ∂

2
xi

ui + ui = r, xi < 0.

Note that the variable xi in the equations above, is the projection of vectors of S
e

on the
directions xi 2 R3. In other words, the variable of the limit equation is xixi. However at
this stage, it’s not clear why the transverse derivative of the Laplacian disappears. As we
will see later, this property is related to the nature of the boundary conditions on ∂S

e

. To
recover Kirchhoff’s relation, we should prove that at the limit e ! 0 we have that

k

Â
i=1

∂ui
∂xi

(0) = 0, u1(0) = ... = uk(0).

More generally, if we consider that the wires have different diameters, one should recover
a relation of the form,

k

Â
i=1

li
∂ui
∂xi

(0) = 0, u1(0) = ... = uk(0), li > 0.

This general relation can be obtained at least formally, by writing the law of conservation
of currents over a small volume.

Now, what happens when we have a nonlinear equation ? We can no longer have a for-
mal proof using the law of conservation of currents, because we can no longer integrate
by parts. Do we still have Kirchhoff relations ?

A priori, we expect to have a nonlinear relation, and more precisely a nonlinear relation
of the different derivatives. Namely a relation on the following form

(2.4) G( ∂x1 u, ..., ∂xk u, u)(0) = 0,

where G is a non linear function, and if we note the variables of G as G(p1, ..., pk, p0) we
have that

(2.5) 0 < n  ∂pi G  µ.

As we will see, the function G depends on the equations but also on the geometry, and
is globally determined by a sort of a cell problem. To understand the behavior of this
system, it is necessary to analyze the transition between the different tubes by zooming.
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Proposition 2.1. There exists a unique solution u 2 C1 to equation (2.1) with the conditions
(2.2), (2.4) and (2.5).

Remark 2.2. We can get bounds easily on u in C1,1 by the maximum principle since we
are in dimension 1. This makes it possible to have bounds on ∂

2
xi

u. The regularity of
a completely nonlinear equation in one dimension is simple. In higher dimensions the
estimates are much more complicated.

Proof. The proof is standard. Existence and regularity is obtained following the ideas of
the previous Remark. We recall the proof of uniqueness which works also for higher
dimension. Let u and v be two solutions. We note each branch by Si (the closed branch).
We proceed by contradiction and assume that sup(u � v) > 0 (for instance), then using
the maximum principle we have

max
Si

(u � v) = (u � v)(0) > 0.

As the maximum is reached in 0 then

∂xi u(0) � ∂xi v(0).

Moreover, since

G( ∂x1 u, ..., ∂xk u, u)(0) = G( ∂x1 v, ..., ∂xk v, v)(0) = 0,

we infer by the growth of G that for all i,

∂xi u(0) = ∂xi v(0).

Going to the second order condition we get

∂

2
xi

u(0)  ∂

2
xi

v(0).

Now using the equation for the ui, and the fact that F is decreasing, we deduce that

u(0)  v(0),

which proves the claimed result. ⇤

2.1.1. Determination of the effective G. Let us consider the very simple case in R given by
the following drawing :

equation 1 equation 2

O

In that case Kirchhoff conditions arises naturally by regularizing. In fact, using a regular-
ization u

e

of u in order to have u
e

2 C1(R) we naturally have

∂xu
e

(0�) = ∂xu
e

(0+), u
e

(0�) = u
e

(0+),

which are Kirchhoff conditions in this particular case.
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In general, we use the multi-dimensional approximation for the determination of the
effective G. As for the previous example from electrostatics, we consider the following
domain:

x

1

x2

x3

x

4

2

The domain S1

To generalize, we consider the domain S1 in Rd. The sections are balls of diameter 2, and
between the tubes a junction is formed, the shape of which does not matter. For any e > 0
set

S
e

= eS1,
and consider the following equation in S

e

F(x, D2u
e

) + u
e

= 0 in S
e

.

We suppose that F is Lipschitz continuous, F(x, 0) bounded, F uniformly elliptic and

�µI  ∂F(x, A)
∂A

(x, A)  �nI,

where n > 0. We consider the following natural boundary conditions,
∂u

e

∂n
= 0 on ∂S

e

.

An extension of the above system that is quite natural, is to consider the following equa-
tion on S

e

(2.6) F
⇣ x

e

, D2u
e

⌘
+ u

e

= 0.

We now give an Antsatz to explain the ideas of the construction. One start by guessing
a candidate solution ū. Then, one construct an approximate solution of the problem in e.

Let ū be a candidate for the limit solution. We consider the following quantity by
adding a small correction to ū in order to zoom in the junction region,

w(x) := ū(x) + ev
⇣ x

e

⌘
8x 2 S

e

.
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The function v is used to make the correction in scale 1, and to compress on the scale e.
It must have the right behavior in order to be able to extend the derivatives to infinity.
More precisely, if xi is the coordinate with respect to the direction xi and y is the transverse
coordinate we must have

lim
xi!+•

v(xi, y)/xi = pi,

where

pi := � ∂xi ū(0).

We now build the good v in order to have

lim
e!0

ku
e

� (ū + ev)k• = 0.

Hence, we naturally expect that there must be some conditions on pi is order to have
the existence of such an object v. In other words, the condition at the limit (of type
G(p1, ..., pk)(0) = 0) is a condition on the fact that one can find such a function v. Let
us find an equation for v. If we replace u

e

by ū + ev in equation (2.6), we have that

eF
✓

x
e

, D2ū(x) +
1
e

D2v
⇣ x

e

⌘◆
+ eū(x) + e

2v
⇣ x

e

⌘
= 0.

If we think of a linear operator of type D, we see that at the order zero, we must have an
equation on S1 of the form

eF
✓

y,
1
e

D2v(y)
◆
' 0.

Thus, we need to make the following assumption,

(2.7) lim
e!0

eF
✓

y,
1
e

A
◆
= F̄(y, A).

Note that with this definition, F̄ satisfies

�µI  ∂F̄(x, A)
∂A

(x, A)  �nI, and F̄(y, 0) = 0.

Example 2.3. The assumption (2.7) is satisfied for the following general class of non lin-
earity:

inf
a

sup
b

⇣
�aab

i,j ∂i,ju � f ab(x)
⌘

where

nI  aab

i,j  µI.

If we put y = x
e

we have that

lim
e!0

inf
a

sup
b

⇣
�aab

i,j (y =
x
e

) ∂i,ju � e f ab(x)
⌘
= inf

a

sup
b

⇣
�aab

i,j (y) ∂i,ju
⌘

.

We thus obtain the limit F̄ for this class of nonlinearity.
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With assumption (2.7), we infer that we need to find a v that solves

F̄(y, D2v) = 0, in S1,

such that
lim

xi!+•

v(xi, y)
xi

= pi,

and we add also Neumann boundary condition on ∂S1,
∂v
∂n

= 0 in ∂S1.

The existence and uniqueness of such an object5 is a compatibility condition between
(pi)1ik. Since we have made the necessary scale changes, the condiiton

G(p1, ..., pk) = 0

must be the necessary and sufficient condition for the existence of such a v.
We now specify what we must choose as a function Fi for the boundary problem in

order to ensure convergence. Let xi be the coordinate with respect to the direction xi. For
|xi| big enough (far from 0), we have the following equation

Fi(xi, ∂

2
xi

ū) + ū = 0.

The only error is with respect to the transverse variable which is of order e. The equation
that one gets is the following

Fi(xi, z) = Fe

i (xixi, zxi ⌦ xi).

Theorem 2.4. There exists a unique constant c(p1, ..., pk) (up to a transformation) which satisfies
the following: there exists a unique solution v 2 C1 (up to an additive constant) to the following
problem

F̄(y, D2v) = 0 on S1, and
∂v
∂n

= 0 on ∂S1,

such that
lim

xi!•
v(xi, yi)/xi = pi,

uniformly in yi, if and only if
c(p1, ..., pk) = 0.

Moreover c is strictly increasing with respect to each of the variables and Lipschitz continuous.
On the other hand, there exists a unique function f strictly decreasing such that

pk = j(p1, ..., pk�1).

Theorem 2.5. If we choose Fi as specified above, and G ⌘ c, then we have that u
e

! ū.

The idea for the proof of Theorem 2.5 is already explained above. To explain the con-
struction of v and c in Theorem 2.4, we start with a few examples.

Example 2.6. We consider the following simple junction problem in dimension 2 :

5which is defined up to an additive constant as for all cell problems.
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o
x

y

The domain S

We are looking for v satisfying the following problem,

F̄(x, D2v) = 0,
∂v
∂n

= 0 on ∂S,

such that

lim
x!+•

v(x, y)
x

= p+,

and

lim
x!�•

v(x, y)
x

= �p�.

We can find a solution that depends only on x. In this case, the equation takes the follow-
ing form

F̄
✓

x,
✓

vxx 0
0 0

◆◆
= 0.

Since F̄ is strictly a non increasing function with respect to vxx, and since F̄(x, 0) = 0, we
have that

vxx = 0,

so that
p+ + p� = 0,

which implies Kirchhoff’s conditions in that particular case.

Example 2.7. In the case where the operator is simply a Laplacian D, Kirchhoff’s condi-
tions are obtained by integrating on a small volume SR:

0 =
Z

SR

�Du = �
k

Â
i=1

Z

Gi
R

∂xi u,

where R > 0.

Example 2.8. We consider a problem in dimension 2 and we consider the following equa-
tion,

� ∂xxu � l ∂yyu = 0,

where l � 0, l 6= 1. If we consider the junction of Example 2.6, then one has the same
Kirchhoff relation

px + py = 0.

On the other hand, if we deform the tube on the following form,
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one gets the following relation
px + lpy = 0.

This example illustrates the importance of angles, and in general the geometry of the
problem.

Proof of Theorem 2.4. Let us consider the following drawing to fix notations :

x

1

x2

x3

G4
R

x

4

2

The domains S1 and SR

We consider the same domain S1, we cut to the length R > 0 in order to get SR, and
we call Gi

R the section. The first step of the proof consists in introducing an approximate
problem on SR and prove that if p1, ..., pk�1 is fixed, then there exists a unique pR

k which
guaranties the existence of a unique function vR (up to an additive constant) solution to
the same equation, such that for all 1  i  k � 1,

∂vR

∂n
= pi on GR

i ,

and
∂vR

∂n
= pR

k on GR
k .
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Note that this is a cell problem that can be solved by fixing a constant cR(p1, ..., pk�1, pR
k ).

We shall see later why we must take this constant equal to zero. The second step is to
take the limit when R ! +• following the following steps : we show that if we cut at a
level 0 < R0 < R, where R0 is arbitrary, then vR is locally bounded on SR0 uniformly in
R. Then, we explain why pR

K is bounded and infer the behavior at infinity.
Without loss of generality, and up to a subsequence, one can always assume that

(2.8) pR
k � �C,

where C > 0, and we can replace vR by �vR by changing all the signs.
From now on we simply use pk instead of pR

k to avoid distinguishing the different
cases. Let us introduce two domains SR0 and SR1 analogous to SR : a cut in R0, and a cut
in R1, where R0 < R1. Since vR is defined up to an additive constant, we can normalize
vR by requesting that

(2.9) inf
SR0

vR = 0.

Remark 2.9 (general remark). We have a second-order elliptic equation with Neumann
conditions on the boundary of S1. Using the maximum principle, we have for any x > 0,

inf
Sx

vR = min
1ik

inf
Gi

x

vR.

Note that the above quantity defines a non-increasing function of x.

Remark 2.10. (a general bound) Let us consider one of these branches (say i), and let
(z, z0) 2 R2

+ be such that R > z0 � z, |z| big enough to be in he flat part, and with
analogous notations we consider the boundary Gi

z. One checks that

(2.10) sup
w

vR(z, w) + pi(z0 � z) � vR(z0, y) � inf
w

vR(z, w) + pi(z0 � z).

To prove this bound, we use the maximum principle. Given the structure of the equa-
tion, the right and left sides in (2.10) are solutions of the equation and naturally satisfy
Neumann conditions on the boundary because it doesn’t depend on the transversal vari-
able. Note also that these functions satisfies the conditions on Gi

R where 1  i  k. We
infer by the maximum principle that vR is between these two bounds. This is a simple
argument which shows that if the function is bounded in a region, then we obtain the
behavior at infinity automatically. Note that this property is strongly related to the fact
that F̄(., 0) = 0 (affine functions are solutions to the problem). We infer that once we
solve the other questions, the behavior at infinity is obtained automatically.

Now we understand why we have to choose cR(p1, ..., pk�1, pR
k ) = 0 among all the

constants. In fact, it is the only constant which ensures that the right condition at the
limit on the truncated domain is satisfied, and to avoid degeneration when we take the
limit R ! +•.

We now show that vR and pR are locally bounded. Let us prove that vR is bounded on
SR1 taking into account the normalization (2.9). Thanks to (2.10), one has

inf
Gi

R1

vR � inf
Gi

R1

vR + pi(R0 � R1),
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so that
min

i
inf
Gi

R1

vR  min
i

inf
Gi

R0

vR + C,

thanks to (2.8). It follows that
inf
SR1

vR  inf
SR0

vR + C,

thanks to Remark 2.9. The normalization (2.9) provides an homogeneous equation on
SR0 which is

F̄(x, D2vR) = 0, vR � 0.

Since
inf
SR1

vR  C,

we infer from Harnack’s inequality that

sup
SR1

vR  C.

Note that the uniformly elliptic character is used here very strongly. Let us now prove
that pR

k are bounded. Note that for the branches 1, ..., k � 1 we have all the necessary : the
locally bounded character and the behavior to infinity. In particular the following holds,

pixi + C � vR(xi, yi) � pixi � C, 8yi 8xi � R1.

In the branch k, it is enough to use (2.10) by introducing R1 < R2 < R0. The above
proof also applies for R2 and we infer that vR is bounded in SR2 . Using (2.10), one has

inf
GR2

k

vR � inf
GR1

k

vR + pR
k (R2 � R1),

which provides that
pR

k  C.

This allows to prove that vR is locally bounded everywhere, and moreover the asymptotic
behavior follows using (2.10). The limit R ! +• does not pose any problem: we take
a subsequence such that the pR

k converges and vR converges uniformly on any bounded
set to a v. Neumann conditions remain satisfied by the theory of viscosity solutions. One
can also prove uniqueness of pR

k and so we find the condition at the effective limit. ⇤
We now specify a few points about the limit equations on the branches.

Remark 2.11. Consider the following equation on a branch of size e,

F((x, y), D2u
e

) + u
e

= 0.

we know that u
e

! u uniformly, where u := ū is defined on one dimension, and we have
on the boundary

∂u
e

∂n
= 0.

Formally we expect to have an equation of the following form,

F
✓
(x, 0),


uxx 0
0 0

�◆
+ u = 0.
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We prove this using the viscosity solutions theory. Let f 2 C2 and let us assume that the
function u(x)� f(x) has a strict local maximum in x0. This implies that

u
e

(x, y)� f(x)

have a local maximum in (x
e

, y
e

), where x
e

! x0 and |y
e

|  e/2, thanks to the uni-
form convergence. The difficulty is that the point (x

e

, y
e

) could be such that y
e

is on the
boundary. In this case, we have not the claimed equation. To avoid this case, we will
use a perturbation strategy, which will consist in introducing a perturbation in order to
prevents the second coordinate to be on the boundary. More precisely, we consider the
following quantity

u
e,d(x, y)� f(x) + dd(y),

where d > 0 inside the domain, is regular, and behaves like the distance to the boundary6:
in particular we have that

d(±e/2) = 0.

Now, if the maximum point of u
e,d is reached such that |y

e

| = e/2 then

∂yu
e,d(x, y) = �d < 0,

which is a contradiction. We now have the following information on the equation,

F
✓

x
e

, y
e

,


fxx 0
0 O(d)

�◆
+ u(x

e

, y
e

)  0.

Taking the limit when d ! 0 and e ! 0, we infer that

F
✓

x, 0,


fxx 0
0 0

�◆
+ u(x0)  0,

which shows that it is a viscosity sub-solution. This explains how to get the limit equa-
tion.

Remark 2.12. If we consider the following equation on S
e

F
⇣

x,
x
e

, Du
e

, D2u
e

⌘
+ u

e

= 0,

the limit equations on the branches are the following,

Fi
✓

xi, (uxi , 0),


uxixi 0
0 0

�◆
+ u = 0.

These equations are recovered using the same arguments presented above.

6for instance, one can consider the function y ! e/2 � |y|, regularized near zero.



HJB EQUATIONS AND EXTENSIONS OF CLASSICAL STOCHASTIC CONTROL THEORY 43

2.2. Hamilton Jacobi equations of the first order. We consider the same kind of junc-
tions and on each branch xi < 0, we consider the following equation

Hi(xi, ∂xi u) + u = 0, and u 2 C(S).

In addition, we assume for instance that

lim
|z|!+•

Hi(xi, z) = +•,

uniformly in xi.

Example 2.13. We consider the following particular case:

equation 1 equation 2

O

We start from the following equation,

H(x, Du
e

) + u
e

= 0 in S
e

,

where S
e

is the domain described in the previous subsections. Note that it is also possible
to have

H
⇣

x,
x
e

, Du
e

⌘
+ u

e

= 0,

to manage the discontinuity, and we can also have a additional term on the form �hD in
the previous equation. If e = o(h), we can not see the regularization term. On the other
hand, if h = o(e), the additional term is useless. There is therefore a critical velocity when
e ⇠ h.

The main novelty compared to the elliptic case is that in this case it is possible either
to have Neumann conditions on the boundary or also state constraint conditions. This is
a specificity of the first-order equations. An other difference with the elliptic equations is
the following fact : in the elliptic case, whatever the value in zero is, we can always find
a solution. This is not the case for first-order equations.

Another regularization problem consists in considering the following equation,

�dDu
e,d + H(x, Du

e,d) + u
e,d = 0 in S

e

.

We get the following equation at the limit e ! 0,

d ∂

2
xixi

u
d

+ Hi(xi, ∂xi ud

) + u
d

= 0.

This is the case which has been treated up to now. Since we have a Laplacian, we recover
a linear condition:

k

Â
i=1

∂xi ud

(0) = 0.

and the terms of order one do not change the result. A natural idea of approximation of
the idealized problem is to take the limit d ! 0 by the vanishing viscosity method.



44 NOTES FROM P.-L. LIONS’ LECTURES AT THE COLLÈGE DE FRANCE

Example 2.14. We now consider the following equation in dimension one :

( ∂xu)2 + u = 0.

In this case, u  0 and therefore u(0)  0. This example shows that we can not solve
for any values of the function c = u(0). Indeed, there are restrictions on the boundary
conditions.

The previous example illustrates a typical aspect of first-order equations. Thus the nat-
ural question is: what is the set of c such that there exists a unique solution u continuous
of viscosity such that u(0) = c. It is well known that if H is convex in z the set of possible
values is given by (�•, c0] with c0 2 R. Note that the set of c which ensures the existence
of solutions is also the set of c which ensures the existence of sub-solutions.

Moreover, this result is actually always true and does not require convexity. In fact :
let c0 be the value corresponding to the maximum solution. We want to show that the set
of possible values c such that c < c0 is an interval : which means that there is no holes.
We take a possible value c1 < c0 and want to be sure that there are always solutions of
values in (c1, c0). The idea is to use Perron’s method : the supremum of sub-solutions is
a super-solution. Let uc1 be the solution corresponding to u(0) = c1. Since, c1 < c0 this is
not the state constraint solution, and therefore there exists a function f such that

uc1 � f

has a minimum in zero and

H
✓

0,
∂f

∂x
(0)

◆
+ c1 < 0.

Thanks to Perron’s method there exists e0 > 0, e 2 (0, e0) and f

e

2 C1 such that

H(x, ∂xf

e

) + c0 + e  0.

Therefore, there exists a solution on [c1, c1 + e0). Note that by this method, one does not
need the convexity.

Considering now the case of a junction with k branches, we have on each branch i 2
{1, ..., k} a value ci

0, which corresponds to the equation on the branch k. Hence, to get a
solution on all the branches, one has to choose

c  min ci
0.

Note that we can not do better: c = min ci
0 is the maximum solution because u is increas-

ing with respect to c.

Proposition 2.15. There exists a unique Lipschitz continuous solution of the k equations such
that u is a super-solution at zero in the following sense: 8f 2 C1(S), u� f has a local minimum
in zero on S, and we have that

max (Hi(0, ∂xi f(0))) + u(0) � 0.

Furthermore
u(0) = min

i
ci

0.
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Proof. We use Soner’s method for the state constraint problems on each of the half-lines
(xi  0): if we have a super-solution and a sub-solution, we then know that the maximum
of the difference will be reached at 0. We look at each branch of the junction, and the only
difficulty is when the maximum point is at 0. In that case, we use the global condition
assumed in the proposition to conclude. ⇤

This result is recovered when we use the multi-dimensional approximation process
(under technical assumptions) with state constraints on the boundary. At the limit e ! 0
we select this maximum solution. Moreover, if we consider the following approximation:

�d ∂

2
xi

u
d

+ Hi(xi, ∂xi ud

) + u
d

= 0.

We have formally lim
d!0 u

d

= u (converges up to a subsequence) provided that we im-
pose a the right condition on boundary of type

c( ∂x1 u, ..., ∂xk u) = 0,

where c is strictly increasing relative to each variable. When passing to the limit, we keep
the equations and on each branch we have that

Hi(xi, ∂xi u) + u = 0 xi < 0.

Uniqueness remains an open problem. We know that there is uniqueness if Hi(0, z) has
no flat part.

3. SEMINAR : NEW RESULTS ON SCALAR CONSERVATION LAWS ?

3.1. Introduction. The conservation laws are important equations, because in physics it
is quite natural to talk about preserved quantities. An interesting special case of conser-
vation laws is the class of scalar conservation laws which are hyperbolic systems. One of
the most famous examples is Burgers equation:

∂tu + ∂x(u2) = 0.

More generally, we are interested in equations on the following form

(3.1) ∂tu + div(F(x, u)) = G(x, u),

where the unknown is a function defined from (0, •) ⇥ Rd into R, and the functions
F, G : Rd ⇥ R ! Rd. Among conservation laws, the scalar case is simpler because we
have at least formally a good behavior in the norm L1. In fact, let u, v be two solutions to
equation (3.1). If G ⌘ 0 (for simplicity), we have that

∂t(u � v) + div(F(x, u)� F(x, v)) = 0.

Thus, if we can write F(x, u) � F(x, v) = A(x)(u � v), one can easily show that t !
ku(t)� v(t)kL1 is constant. On the other hand, a second peculiarity of this system is the
comparison principle. In fact, at least formally if u0  v0, we expect that u  v.

What is classical about these equations is the following:
• Shocks formation.
• Selection criteria for solutions: Oleinink.
• Selection criteria: Kruzkov’s theory (L1 framework).
• Idea of entropy.
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Remark 3.1 (links with HJ equations). We consider the following equation in dimension
one

∂tu + div(H(x, u)) = 0.

If we define the function U as
U :=

Z x

�•
u,

then U satisfies the following HJ equation,

∂tU + H(x, ∂xU) = 0.

If we have an L1-framework for the first equation, then the framework of the second
equation is C0.

3.2. Revisiting Kruzkov. In the scalar case, it is relatively easy to find the entropies. In
fact, consider the following equation in dimension one,

∂tu + div(F(u)) = 0.

If we take h

0 = F0
j

0, by change of variables, and at least formally, one has

(3.2) J(j) = ∂t j(u) + ∂xh(u) = 0.

Thus, one expects that if J = 0 here, then as long as there is no shock we have that,
J(j) = 0, for every function j. The entropy criterion consists in asking that J(j)  0, for
all convex functions j.

If we consider J on the set of convex function, then one can look only at the extreme
points since J is linear, and all the other convex functions are convex combinations of
these extreme points. The extreme points are |u � k|, which corresponds to the fact that
j

00 is a Dirac mass. We also look at (u � k)+, and (k � u)+. These functions generate the
set of increasing convex functions and decreasing convex function respectively.

By analogy with Kruzkov’s theory, we have been able to understand well HJ equations
in the sense of viscosity, and we would like to do the opposite now. Let us start by
recalling Kruzkov’s theorem. Let u 2 L1 be an entropic solution to the following system

∂tu + div(F(u)) = 0 ut=0 = u0.

Theorem 3.2 (Kruzkov). For any u0 2 L1, there exists a unique entropic solution.

Sketch of the proof. The key point in Kruzkov’s proof is the idea of doubling the variables.
In fact, if u, v are two solutions, we consider u(x, t)� v(y, s). One can think of a stationary
problems of the following form, to simplify the presentation7 :

u + divx(F(u)) = u0

v + divy(F(v)) = v0

When we take for example j = (u � k)+, the h that works is

h(u) = (F(u)� F(k)) sign+(u � k).

7by integrating in time for instance.
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Using the entropy relation (3.2) above ( with k = v(y) and k0 = u(x)), we have that

|u(x)� v(y)|+ ∂x{[F(u(x))� F(u(y))] sign(u � v)}
+ ∂y{[F(u(x))� F(u(y))] sign(u � v)}

 (u0(x)� v0(y)) sign(u0 � v0)  |u0 � v0|.(3.3)

Now, what we want to recover is the information in x and so we bring y closer to x, using
a suitable kernel. More precisely, we multiply inequality (3.3) by x ! r

#

(x � y) where

r

#

:=
1
#

d r(
.
#

), r � 0,
Z

r = 1, and Supp(r) is compact.

Integrating by part, one obtains that
Z Z

|v(x)� v(y)|r
#

(x � y) 
Z Z

|u0 � v0|r#

(x � y).

Thus, taking the limit # ! 0, we get the L1 norm, namely

ku � vkL1  ku0 � v0kL1 .

This shows not only uniqueness, but also stability and the contraction effect. ⇤

It is also possible to define entropic sub-solutions and entropic super-solutions. In fact,
we say that u is an entropic sub-solution, if

∂t(u � k)+ + div{(F(u)� F(k))sign+(u � k)}  0.

This is equivalent to say that we have the entropy inequality for all increasing convex
functions. This implies that u is a sub-solution in the sense of distributions for the fol-
lowing equation

∂tu + div(F(u))  0.

In the same way, we define super-solutions, through the entropy inequality for all de-
creasing convex functions.

Using the same ideas of Kruzkov’s theorem proof, one can look what happens for u if
we use (u � k)+ and (k � u)+ for v. One checks that

(u(x)� v(y))+ + divx{(F(u)� F(v)) sign+(u � v)}
+divy{(F(u)� F(v)) sign+(u � v)}  (u0 � v0)

+.

This allows to prove that if u0  v0 then u  v for solutions, and also for sub-solutions
and super-solutions. Hence, this gives a comparison principle, and shows that sub-
solutions are below the natural solutions.

Remark 3.3. i) Perron’s principle is satisfied : the solution is the supremum of all sub
solutions.

ii) Now, we are interested in a very useful notion in the framework of HJ equations :
inf-convolution and sup-convolution of continuous functions. We use notations of Re-
mark 3.1. The most often used sub-convolution for HJ equations is the following

sup
y

⇢
U(y)� 1

2#

|x � y|2
�

= sup
y

⇢
U(x � y)� 1

2#

|y|2
�

.
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Now, the question that naturally arises is : it is possible to use this tool for scalar equa-
tions using Remark 3.1? Since the invariance by translation is not adapted to the scalar
equations we change the definition and consider the following:

sup
|x�y|#

{U(y)} .

Now to adapt, we start from an entropic sub-solution for the conservation equation and
consider

(3.4) Y(x) := sup
|x�y|#

{u(y)} = sup
|y|#

{u(x � y)}

assuming that we have enough regularity in order to give sense to the previous expres-
sions. Now, the natural question that arises is the following: is the sup of two entropic
sub-solutions a sub-solution? The answer is yes. In fact, Kruzkov’s Theorem tells us
more than the simple fact of uniqueness, it also says that the sup of two entropic sub-
solutions is an entropic sub-solution. By adding constants in the definition of an entropic
sub-solution, we have that

∂t max(u, k) + divx(F(max(u, k)))  0.

In the same way, the solution can be written in the following form

∂t min(u, k) + divx(F(min(u, k))) � 0.

Note the similarity with the notions of sub-solutions and super-solutions for HJ equa-
tions, except that here the functions test are max(u, k) and min(u, k).

Theorem 3.4. If u and v are entropic sub-solutions, then max(u, v) is an entropic sub-solution.

Sketch of the proof. We use the same idea of Kruzkov’s theorem, by doubling the variables
and considering max(u(x), v(y)). We use the previous inequalities, and the same argu-
ment for Z

r

#

(x � y)
�

divx(F(max(u(x), v(y)))) + divy(F(max(u(x), v(y))))
 

.

The first term vanishes completely. ⇤
In view of these remarks, the regularization (3.4) is well defined and in particular it

preserves the aspect of sub-solution thanks to Theorem 3.4. If we know how to define
this regularization process, then every positive solution is in the function space BV.

Indeed, regularization (3.4) turns to solve the following equation with respect to e,

∂

#

u + |ru| = 0.

Hence, at least formally, if we have L1 regularity, then we get BV regularity by integrat-
ing. We only need to pay attention to the fact that if we have L1 regularity, then the
supremum in the definition (3.4) is only an essential supremum. In this case we cannot
say that Y is a sub-solution because the essential sup is not necessarily a limit of count-
able sup. Thus, one can always make the regularization, but it does not always converge
to a function: it converges to an envelope that has a particular property. However, for a
function that is reasonable in terms of L1, the definition gives a regularization BV which
preserves the notion of sub-solution.



HJB EQUATIONS AND EXTENSIONS OF CLASSICAL STOCHASTIC CONTROL THEORY 49

3.3. Boundary conditions for conservation laws. In this subsection, we explore the equiv-
alence for conservation laws of the notion of state constraints (for HJ equations). For con-
servation laws, this means that what happens at the boundary will depend mainly on the
signs. Looking at these extreme cases, we have Dirichlet boundary conditions.

3.3.1. Saturated solutions. For saturated solutions, all signs count. Think of a half line that
ends in 0 with a half-space (in general, a hyperplane):

half space
O

A saturated solution in the half-space x1 � 0 is an entropy solution on the half-space
which is an entropic super-solution on the boundary for some k.

This means that the inequality is written on the closure of the set: multiply by test
functions and integrate by parts on the closure of the domain, and we recover F(k) as a
boundary term. We prove that there exists a unique solution which satisfies the above
conditions and that is greater than all the entropic solutions on the second domain pro-
vided that F1(z) ! +• if |z| ! +•. The terminology of saturated solution comes from
this last property.

3.3.2. Dirichlet boundary conditions. Consider a domain W and assume that u
∂W = u0 2

L1. We have the following new problem,

∂tu + divx(F(x, u)) = 0 u
∂W = 0.

Here the x dependence in the transport term is W1,1. In this problem, we have an over-
determination and therefore we must relax the problem. We define an entropic sub-
solution in the following way:

(3.5) 8k > 0, 8j 2 C1(W), �
Z

W
F(max(u, k)).rj +

Z

∂W
F(k).n  0.

In that case, we can prove existence and uniqueness of a solution. The result is proved
using a regularization by viscosity by considering the following problem,

�#Du + ∂tu + divx(F(x, u)) = 0, u#

∂W = 0.

For this problem, there is no more over-determination and the solution is regular. We
consider the following quantity:

max(u#, k)
∂W = k
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which is constant and equal to k in the neighborhood of the boundary. Thus, when inte-
grating by parts the Laplacian is zero and the other terms are exactly the terms in defini-
tion 3.5.

? ? ? ?
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C. MOUZOUNI: UNIV LYON, ÉCOLE CENTRALE DE LYON, CNRS UMR 5208, INSTITUT CAMILLE JOR-
DAN, 36 AVENUE GUY DE COLLONGE, F-69134 ECULLY CEDEX, FRANCE.

E-mail address: mouzouni@math.univ-lyon1.fr


