
Deep neural networks algorithms for stochastic control problems on finite horizon

Part I: convergence analysis

Côme Huré, Huyên Pham, Achref Bachouch, Nicolas Langrené

Les Cahiers de la Chaire / N°77

Deep neural networks algorithms for stochastic control
problems on Þnite horizon, part I: convergence analysis

CöomeHur «e ! Huyöen Pham Achref Bachouch à NicolasLangren «e ¤

December 9, 2018

Abstract

This paper develops algorithms for high-dimensional stochastic control problems
based on deep learning and dynamic programming (DP). Di!erently from the classical
approximate DP approach, we Þrst approximate the optimal policy by means of neural
networks in the spirit of deep reinforcement learning, and then the value function by
Monte Carlo regression. This is achieved in the DP recursion by performance or hybrid
iteration, and regress now or later/quantization methods from numerical probabilities.
We provide a theoretical justiÞcation of these algorithms. Consistency and rate of
convergence for the control and value function estimates are analyzed and expressed
in terms of the universal approximation error of the neural networks. Numerical re-
sults on various applications are presented in a companion paper [2] and illustrate the
performance of our algorithms.

Keywords: Deep learning, dynamic programming, performance iteration, quantization,
convergence analysis.

⇤
LPSM, University Paris Diderot hure at lpsm.paris

†
LPSM, University Paris-Diderot and CREST-ENSAE, pham at lspm.paris The work of this author is

supported by the ANR project CAESARS (ANR-15-CE05-0024), and also by FiME and the ”Finance and

Sustainable Development” EDF - CACIB Chair
‡
Department of Mathematics, University of Oslo, Norway. The author’s research is carried out with

support of the Norwegian Research Council, within the research project Challenges in Stochastic Control,

Information and Applications (STOCONINF), project number 250768/F20 achrefb at math.uio.no
§
CSIRO, Data61, RiskLab Australia Nicolas.Langrene at data61.csiro.au

1

Contents

1 Introduction 2

2 Preliminaries on DNN and SGD 6
2.1 Neural network approximations . 6
2.2 Stochastic optimization in DNN . 7

3 Description of the algorithms 9
3.1 Control learning by performance iteration 9
3.2 Control learning by hybrid iteration . 10

3.2.1 Hybrid-Now Algo . 11
3.2.2 Hybrid-LaterQ Algo . 12

3.3 Training sets design . 13
3.4 Some remarks . 14

3.4.1 Case of Þnite control space: classiÞcation 14
3.4.2 Comparison of the algorithms . 15

4 Convergence analysis 15
4.1 Control learning by performance iteration (NNcontPI) 18
4.2 Hybrid-Now algorithm . 24
4.3 Hybrid-LaterQ algorithm . 30

A Appendix 36
A.1 Localization . 36
A.2 Forward evaluation of the optimal controls in A M 38
A.3 Proof of Lemma 4.1 . 39
A.4 Proof of Lemma 4.2 . 45
A.5 Function approximation by neural networks 46
A.6 Proof of Lemma 4.3 . 47
A.7 Proof of Lemma 4.4 . 49
A.8 Some useful Lemmas for the proof of Theorem 4.2 50

1 Introduction

Let us consider the following discrete-time stochastic control problem over a Þnite horizon
N ! N \ { 0} . The dynamics of the controlled state processX ! = (X !

n)n valued in X " Rd

is given by

X !
n+1 = F (X !

n , ! n , "n+1), n = 0 , . . . , N # 1, X !
0 = x0 ! Rd, (1.1)

where ("n)n is a sequence of i.i.d. random variables valued in some Borel space (E, B(E)),
and deÞned on some probability space (", F , P) equipped with the Þltration F = (Fn)n

generated by the noise ("n)n (F0 is the trivial #-algebra), the control ! = (! n)n is an

2

F-adapted process valued inA " Rq, and F is a measurable function fromRd $ Rq $ E
into Rd.

Given a running cost function f deÞned onRd $ Rq, a terminal cost function g deÞned
on Rd, the cost functional associated to a control process! is

J (!) = E

"
N " 1X

n=0

f (X !
n , ! n) + g(X !

N)

#
.

The set C of admissible control is the set of control processes! satisfying some integrability
conditions ensuring that the cost functional J (!) is well-deÞned and Þnite. The control
problem, also called Markov decision process (MDP), is formulated as

V0(x0) := inf
! #C

J (!), (1.2)

and the goal is to Þnd an optimal control ! ! ! C , i.e., attaining the optimal value: V0(x0)
= J (! !). Notice that problem (1.1)-(1.2) may also be viewed as the time discretization
of a continuous time stochastic control problem, in which case,F is typically the Euler
scheme for a controlled di!usion process, andV0 is the discrete-time approximation of a
fully nonlinear Hamilton-Jacobi-Bellman equation.

Problem (1.2) is tackled by the dynamic programming approach, and we introduce the
standard notations for MDP: denote by { Pa(x, dx$), a ! A, x ! X } , the family of transition
probabilities associated to the controlled (homogenous) Markov chain (1.1), given by

Pa(x, dx$) = P
⇥
F (x, a, " 1) ! dx$⇤

and for any measurable function$ on X :

Pa$(x) =
Z

$(x$)Pa(x, dx$) = E
⇥
$
�
F (x, a, " 1)

�⇤
.

With these notations, we have for any measurable function$ on X , for any ! ! C ,

E[$(X !
n+1)|F n] = P! n$(X !

n), %n ! N.

The optimal value V0(x0) is then determined in backward induction starting from the
terminal condition

VN (x) = g(x), x ! X ,

and by the dynamic programming (DP) formula, for n = N # 1, . . . , 0:
(

Qn(x, a) = f (x, a) + PaVn+1 (x), x ! X , a ! A,
Vn(x) = inf

a# A
Qn(x, a), (1.3)

The function Qn is called optimal state-action value function, andVn is the (optimal) value
function. Moreover, when the inÞmum is attained in the DP formula at any time n by
a!

n (x), we get an optimal control in feedback form given by: ! ! = (a!
n (X !

n))n where X ! =
X ! ⇤

is the Markov process deÞned by

X !
n+1 = F (X !

n , a!
n (X !

n), "n+1), n = 0 , . . . , N # 1, X !
0 = x0.

3

The DP has a probabilistic formulation: it says that for any control ! ! A , the value
function process augmented with the cumulative costs deÞned by

�
S!

n := Vn(X !
n) +

n" 1X

k=0

f (X !
k , ! k), n = 1 , . . . , N

(1.4)

is a submartingale, and a martingale for the optimal control ! ! . This martingale property
for the optimal control is a key observation for our algorithms described later.

Remark 1.1 We can deal with state/control constraints at any time, which is useful for
the applications:

(X !
n , ! n) ! S a.s., n ! N,

where S is some given subset ofRd $ Rq. In this case, in order to ensure that the set of
admissible controls is not empty, we assume that the sets

A(x) :=
n

a ! Rq : (F (x, a, " 1), a) ! S a.s.
o

are non empty for all x ! X , and the DP formula reads now as

Vn(x) = inf
a# A(x)

⇥
f (x, a) + PaVn+1 (x)

⇤
, x ! X .

From a computational point of view, it may be more convenient to work with unconstrained
state/control variable, hence by relaxing the state/control constraint and introducing into
the running cost a penalty function L(x, a): f (x, a) & f (x, a) + L(x, a), and g(x) &
g(x) + L(x, a). For example, if the constraint set S is in the form: S = { (x, a) ! Rd $ Rq :
hk(x, a) = 0 , k = 1 , . . . , p, hk(x, a) ' 0, k = p + 1 , . . . , q} , for some functionshk, then one
can take as penalty functions:

L (x, a) =
pX

k=1

µk |hk(x, a)|2 +
qX

k= p+1

µk max(0, # hk(x, a)) .

where µk > 0 are penalization coe#cients (large in practice). 2

The implementation of the DP formula requires the knowledge and explicit computa-
tion of the transition probabilities Pa(x, dx$). In situations when they are unknown, this
leads to the problematic of reinforcement learning for computing the optimal control and
value function by relying on simulations of the environment. The challenging tasks from a
numerical point of view are then twofold:

1. Transition probability operator. Calculations for any x ! X , a ! A of PaVn+1 (x),
for n = 0 , . . . , N # 1. This is a computational challenge in high dimensiond for the
state space with the Òcurse of dimensionalityÓ due to the explosion of grid points in
deterministic methods.

2. Optimal control. Computation of the inÞmum in a ! A of
⇥
f (x, a) + %PaVn+1 (x)

⇤

for Þxed x and n, and of öan(x) attaining the minimum if it exists. This is also a
computational challenge especially in high dimensionq for the control space.

4

The classical probabilistic numerical methods based on DP for solving the MDP are
sometimes called approximate dynamic programming methods, see e.g. [4], [29], and consist
basically of the two following steps:

(i) Approximate at each time step n the Qn value function deÞned as a conditional
expectation. This can be performed by regression Monte-Carlo (RMC) techniques
or quantization. RMC is typically done by least-square linear regression on a set of
basis function following the popular approach by Longsta! and Schwarz [24] initiated
for Bermudean option problem, where the suitable choice of basis functions might be
delicate. Conditional expectation can be also approximated by regression on neural
network as in [19] for American option problem, and appears as a promising and
e#cient alternative in high dimension to the linear regression. The main issue in
the controlled case concerns the simulation of the endogenous controlled MDP, and
this can be overcome by control randomization as in [17]. Alternatively, quantization
method consists in approximating the noise ("n) by a discrete random variable on a
Þnite grid, in order to reduce the conditional expectation to a Þnite sum.

(ii) Control search: Once we get an approximation (x, a) () öQn(x, a) of the Qn value
function, the optimal control öan(x) which achieves the minimum overa ! A of Qn(x, a)
can be obtained either by an exhaustive search whenA is discrete (with relatively
small cardinality), or by a (deterministic) gradient-based algorithm for continuous
control space (with relatively small dimension).

Recently, numerical methods by direct approximation, without DP, have been deve-
loped and made implementable thanks to the power of computers: the basic idea is to
focus directly on the control approximation by considering feedback control (policy) in a
parametric form:

an(x) = A(x; &n), n = 0 , . . . , N # 1,

for some given functionA(., &n) with parameters &= (&0, . . . , &N " 1) ! Rq%N , and minimize
over & the parametric functional

÷J (&) = E

"
N " 1X

n=0

f (X A
n , A(x; &n)) + g(X A

N)

#
,

where (X A
n)n denotes the controlled process with feedback control (A(., &n))n . This ap-

proach was Þrst adopted in [21], who used EM algorithm for optimizing over the parameter
&, and further investigated in [13], [6], [15], who considered deep neural networks (DNN) for
the parametric feedback control, and stochastic gradient descent methods (SGD) for com-
puting the optimal parameter &. The theoretical foundation of these DNN algorithms has
been recently investigated in [14]. Deep learning has emerged recently in machine learning
as a successful technique for dealing with high-dimensional problems in speech recognition,
computer vision, etc (see e.g. [22], [9]). Let us mention that DNN approximation in stochas-
tic control has already been explored in the context of reinforcement learning (RL) (see [4]
and [30]), and called deep reinforcement learning in the artiÞcial intelligence community

5

[26] (see also [23] for a recent survey) but usually for inÞnite horizon (stationary) control
problems.

In this paper, we combine di!erent ideas from the mathematics (numerical probability)
and the computer science (reinforcement learning) communities to propose and compare
several algorithms based on dynamic programming (DP), and deep neural networks (DNN)
for the approximation/learning of (i) the optimal policy, and then of (ii) the value function.
Notice that this di!ers from the classical approach in DP recalled above, where we Þrst
approximate the Q-optimal state/control value function, and then approximate the opti-
mal control. Our learning of the optimal policy is achieved in the spirit of [13] by DNN,
but sequentially in time though DP instead of a global learning over the whole period
0, . . . , N # 1. Once we get an approximation of the optimal policy, and recalling the mar-
tingale property (1.4), we approximate the value function by Monte-Carlo (MC) regression
based on simulations of the forward process with the approximated optimal control. In
particular, we avoid the issue ofa priori endogenous simulation of the controlled process in
the classicalQ-approach. The MC regressions for the approximation of the optimal policy
and/or value function, are performed according to di!erent features leading to algorithmic
variants: Performance iteration (PI) or hybrid iteration (HI), and regress now or regress
later/quantization in the spirit of [24] or [8]. Numerical results on several applications are
devoted to a companion paper [2]. The theoretical contribution of the current paper is to
provide a detailed convergence analysis of our three proposed algorithms: Theorem 4.1 for
the NNContPI Algo based on control learning by performance iteration with DNN, Theo-
rem 4.2 for theHybrid-Now Algo based on control learning by DNN and then value function
learning by regress-now method, and Theorem 4.3 for theHybrid-LaterQ Algo based on on
control learning by DNN and then value function learning by regress later method com-
bined with quantization. We rely mainly on arguments from statistical learning and non
parametric regression as developed notably in the book [12], for giving estimates of ap-
proximated control and value function in terms of the universal approximation error of the
neural networks.

The plan of this paper is organized as follows. We recall in Section 2 some basic results
about deep neural networks (DNN) and stochastic optimization gradient descent methods
used in DNN. Section 3 is devoted to the description of our three algorithms. We analyze
in detail in Section 4 the convergence of the three algorithms. Finally the Appendix collect
some Lemmas used in the proof of the convergence results.

2 Preliminaries on DNN and SGD

2.1 Neural network approximations

Deep Neural networks (DNN) aim to approximate (complex non linear) functions deÞned on
Þnite-dimensional space, and in contrast with the usual additive approximation theory built
via basis functions, like polynomial, they rely on composition of layers of simple functions.
The relevance of neural networks comes from the universal approximation theorem and the
Kolmogorov-Arnold representation theorem (see [20], [5] or [16]), and this has shown to be
successful in numerous practical applications.

6

We consider here feedforward artiÞcial network (also called multilayer perceptron) for
the approximation of the optimal policy (valued in A " Rq) and the value function (valued
in R), both deÞned on the state spaceX " Rd. The architecture is depicted in Figure 1,
and it is mathematically represented by functions

x ! X (#) $(z; &) ! Ro,

with o = q or 1 in our context, and where & ! % " Rp are the weights (or parameters) of
the neural networks. The DNN function $ = $ L with input layer $ 0 = ($ i

0)i = x ! X
composed ofd units (or neurons), L # 1 hidden layers (with layer ' composed ofd" units),
and output layer composed ofdL = o neurons is obtained by successive composition of
linear combination and activation function #" (that is a nonlinear monotone function like
e.g. the sigmoid, the rectiÞed linear unit ReLU, the exponential linear unit ELU, or the
softmax):

$ " = #"(w"$ "" 1 + (") ! Rd` , ' = 1 , . . . , L,

for some matrix weights (w") and vector weight (("), aggregating into & = (w", (")"=1 ,...,L .
A key feature of neural networks is the computation of the gradient (with respect to the
variable x and the weights &) of the DNN function via a forward-backward propagation
algorithm derived from chain rule composition. For example, for the sigmoid activation
function #"(y) = 1 / (1 + e" y), and noting that #$

" = #"(1 # #"), we have

h) $ "

)z

i

ij
=

h
w"

) $ "" 1

)z

i

ij
$ i

" (1 # $ i
"), ' = 1 , . . . , L, i = 1 , . . . , d" , j = 1 , . . . , d

while the gradient w.r.t. & of K(&) = K ($ L (.; &)), for a real-valued di!erentiable function
y ! RdL () K (y), is given in backward induction by

& "
i :=

h) K
) $ "

i

i
$ i

" (1 # $ i
"), ' = L, . . . , 1, i = 1 , . . . , d"

h) K
)w "

i

ij
= $ j

"" 1& "
i ,
h) K

)("

i

i
= & "

i ,
h) K

) $ "" 1

i

j
=

dX̀

k=1

& "
kwkj

" , j = 1 , . . . , d"" 1.

We refer to the online book [27] for a gentle introduction to neural networks and deep
learning.

2.2 Stochastic optimization in DNN

Approximation by means of DNN requires a stochastic optimization with respect to a set
of parameters, which can be written in a generic form as

inf
#

E
⇥
L n(Zn ; &)

⇤
, (2.1)

where Zn is a random variable from which the training samplesZ (m)
n , m = 1 , . . . , M are

drawn, and L n is a loss function involving DNN with parameters & ! Rp, and typically
di!erentiable w.r.t. & with known gradient D#L n.

7

Input #1

Input #2

Input #3
Output

Hidden
layer 1

Hidden
layer 2

Input layer
Output

layer

Figure 1: Representation of a neural network withd = 3, 2 hidden layers, d1 = d2 = 4, d3

= 1.

Several basic algorithms are already implemented inTensorFlow for the search of
inÞmum in (2.1). Given a training sample of sizeM , in all the following cases, the sequence
(&k

n)k# N tends to &n = argmin
#

E
⇥
L n(Zn ; &)

⇤
under suitable assumptions on the learning rate

sequence ((k)&
k=0 .

¥ Batch gradient descent: (compute the gradient over the full training set). Fix an
integer K , and do

&k+1
n = &k

n # (k
1

M

MX

m=1

D#L n(Z (m)
n ; &k

n), for k = 1 , . . . , K.

The main problem with the Batch Gradient Descent is that the convergence is very
slow and also the computation of the sum can be painful for very large training sets.
Hence it makes it very stable, but too slow in most situations.

¥ Stochastic gradient descent (SGD): (compute the gradient over one random instance
in the training set)

&m+1
n = &m

n # (m D#L n(Z (m)
n ; &m

n), m = 1 , . . . , M # 1.

starting from &0
n ! Rp, with a learning rate (m . The Stochastic gradient algorithm

computes the gradient based on a single random instance in the training set. It is
then a fast but unstable algorithm.

¥ Mini-batch gradient descent: (compute the gradient over random small subsets of
the training set, i.e. mini-batches) let Mb be an integer than dividesM . Mb stands
for the number of mini-batches and should be taken much smaller thanM in the
applications.
For all k, . . . , Mb,

Ð Randomly draw a subset
⇣

Z (k,m)
n

⌘M k+1

m=1
of sizeM k+1 := M

Mb in the training set.

Ð iterate: &k+1
n = &k

n # (k
1

M k+1

PM k+1
m=1 D#L n(Z (m)

n ; &k
n).

8

The mini-batch gradient descent is often considered to be the best trade-o! between
speed and stability.

The three gradient descents that we just introduced are the Þrst three historical algo-
rithms that has been designed to learn optimal parameters. Other methods such as the
Adaptive optimization methods AdaGrad, RMSProp, and Þnally Adam are also available.
Although not well-understood and even questioned (see e.g. [31]), the latter are often cho-
sen by the practitioners to solve (2.1) and appear to provide the best results in most of the
situations.
For sake of simplicity, we only refer in the sequel to the stochastic gradient descent method,
when presenting our algorithms. However, we recommend to test and use di!erent algo-
rithms in order to know which are the ones that provide best and fastest results for a given
problem.

3 Description of the algorithms

We propose algorithms relying on a DNN approximation of the optimal policy that we
compute sequentially in time through the dynamic programming formula, and using perfor-
mance or hybrid iteration. The value function is then computed by Monte-Carlo regression
either by a regress now method or a regress later joint with quantization approach. These
variants lead to three algorithms for MDP that we detail in this section.

Let us introduce a setA of neural networks for approximating optimal policies, that is
a set of parametric functionsx ! X () A(x; *) ! A, with parameters * ! Rl , and a setV
of neural networks functions for approximating value functions, that is a set of parametric
functions x ! X () $(x; &) ! R, with parameters & ! Rp.

We are also given at each timen a probability measure µn on the state spaceX , which
we refer to as a training distribution. Some comments about the choice of the training
measure are discussed in Section 3.3.

3.1 Control learning by performance iteration

This algorithm, refereed in short asNNcontPI Algo, is designed as follows:

¥ For n = N # 1, . . . , 0, we keep track of the approximated optimal policies öak, k = n +
1, . . . , N # 1, and approximate the optimal policy at time n by öan = A(.; ö* n) with

ö* n ! arg min
$# Rl

E

"
f (X n , A(X n; *)) +

N " 1X

k= n+1

f (öX $
k , öak(öX $

k)) + g(öX $
N)

#
, (3.1)

where X n ; µn, öX $
n+1 = F (X n, A(X n; *), "n+1) ; PA(X n;$) (X n , dx$), and for k = n +

1, . . . , N # 1, öX $
k+1 = F (öX $

k , öak(öX $
k), " k+1) ; P öak(öX �

k) (öX $
k , dx$). Given estimate öaM

k of öak,
k = n + 1 , . . . , N # 1, the approximated policy öan is estimated by using a training sample⇣

X (m)
n , (" (m)

k+1)k= N " 1
k= n

⌘
, m = 1 , . . . , M of

⇣
X n, (" k+1)k= N " 1

k= n

⌘
for simulating

⇣
X n, (öX $

k+1)k= N " 1
k= n

⌘
,

and optimizing over the parameters* ! Rl of the NN A(.; *) ! A , the expectation in (3.1)
by stochastic gradient descent method (or its variants) as described in Section (2.2).

9

I We then get an estimate of the optimal policy at any time n = 0 , . . . , N # 1 by:

öaM
n = A(.; ö* M

n) ! A ,

where ö* M
n is the ÒoptimalÓ parameter resulting from the SGD in (3.1) with a training

sample of sizeM . This leads to an estimated value function given at any timen by

öV M
n (x) = EM

"
N " 1X

k= n

f (öX n,x
k , öaM

k (öX n,x
k)) + g(öX n,x

N)

#
, (3.2)

where EM is the expectation conditioned on the training set (used for computing
�
öaM

k

�
k),

and
⇣

öX n,x
k

⌘

k= n,...,N
, is given by: öX n,x

n = x, öX n,x
k+1 ; P öaM

k (öX n,x
k) (öX n,x

k , dx$), k = n, . . . , N # 1.

The dependence of the estimated value functionöV M
n upon the training samplesX (m)

k , for
m = 1 , . . . , M , used at time k = n, . . . , N , is emphasized through the exponentM in the
notations.

Remark 3.1 The NNcontPI Algo can be viewed as a combination of the DNN algorithm
designed in [13] and dynamic programming. In the algorithm presented in [13], which totally
ignores the dynamic programming principle, one learns all the optimal controlsA(.; * n), n
= 0 , . . . , N # 1 at the same time, by performing one unique stochastic gradient descent.
This is e#cient as all the parameters of all the NN are getting trained at the same time,
using the same mini-batches. However, when the number of layers of the global neural
network gathering all the NN A(.; * n), n = 0 , . . . , N # 1 is large (say

PN " 1
n=0 ' n ' 100, where

' n is the number of layers inA(., * n)), then one is likely to observe vanishing or exploding
gradient problems that will a!ect the training of the weights and biais of the Þrst layers
of the global NN (see [7] for more details). Therefore, it may be more reasonable to make
use of the dynamic programming structure whenN is large, and learn the optimal policy
sequentially as proposed in ourNNcontPI Algo. Notice that a similar idea was already
used in [11] in the context of uncertain volatility model where the authors use a speciÞc
parametrization for the feedback control instead of a DNN adopted more generally here.
2

Remark 3.2 The NNcontPI Algo does not require value function iteration, but instead is
based on performance iteration by keeping track of the estimated optimal policies computed
in backward recursion. The value function is then computed in (3.2) as the gain functional
associated to the estimated optimal policies (öaM

k)k . Consequently, it provides usually a low
bias estimate but induces possibly high variance estimate and large complexity, especially
when N is large. 2

3.2 Control learning by hybrid iteration

Instead of keeping track of all the approximated optimal policies as in theNNcontPI Algo,
we use an approximation of the value function at timen+1 in order to compute the optimal
policy at time n. The approximated value function is then updated at time n by relying

10

on the martingale property (1.4) under the optimal control. This leads to the following
generic algorithm:

Generic Hybrid Algo

1. Initialization: öVN = g

2. For n = N # 1, . . . , 0,

(i) Approximate the optimal policy at time n by öan = A(.; ö* n) with

ö* n ! arg min
$# Rl

E
h
f (X n , A(X n; *)) + öVn+1 (X A(.,$)

n+1)
i

, (3.3)

where X n ; µn, öX A(.,$)
n+1 = F (X n, A(X n; *), "n+1) ; PA(X n;$) (X n , dx$).

(ii) Updating: approximate the value function by

öVn(x) = E
h
f (X n , öan(X n)) + öVn+1 (X öan

n+1)|X n = x
i

. (3.4)

The approximated policy öan is estimated by using a training sample
⇣

X (m)
n , " (m)

n+1

⌘
, m

= 1 , . . . , M of (X n, "n+1) to simulate
⇣

X n, X A(.;$)
n+1

⌘
, and optimizing over the parameters*

! Rl of the NN A(.; *) ! A , the expectation in (3.3) by stochastic gradient descent method

(or its variants) as described in Section (2.2). We then get an estimate öaM
n = A

⇣
.; ö* M

n

⌘
.

The approximated value function written as a conditional expectation in (3.4) is estimated
according to a Monte Carlo regression, either by a regress now method (in the spirit of [19])
or a regress later (in the spirit of [8] and [3]) joint with quantization approach, and this
leads to the following algorithmic variants detailed in the two next paragraphs.

3.2.1 Hybrid-Now Algo

Given an estimate öaM
n of the optimal policy at time n, and an estimate öV M

n+1 of öVn+1 , we
estimate öVn by neural networks regression, i.e.,

öV M
n ! arg min

!(.;#)#V
E
��f (X n , öaM

n (X n)) + öV M
n+1 (X öaM

n
n+1) # $(X n; &)

��2 (3.5)

using samplesX (m)
n , X öaM

n ,(m)
n+1 , m = 1 , . . . , M of X n ; µn, and X öaM

n ,(m)
n+1 of X öaM

n
n+1 . In other

words, we have

öV M
n = $

⇣
.; ö&M

n

⌘
,

where ö&M
n is the ÒoptimalÓ parameter resulting from the SGD in (3.5) with a training

sample of sizeM .

11

3.2.2 Hybrid-LaterQ Algo

Given an estimate öaM
n of the optimal policy at time n, and an estimate öV M

n+1 of öVn+1 , the
regress-later approach for estimatingöVn is achieved in two stages: (a) we Þrst regress/interpolate

the estimated value öV M
n+1

⇣
X öaM

n
n+1

⌘
at time n + 1 by a NN (or alternatively a Gaussian pro-

cess) $(X öaM
n

n+1), (b) Analytical formulae are applied to the conditional expectation of this

NN of future values X öaM
n

n+1 with respect to the present value X n, and this is obtained by
quantization of the noise ("n) driving the dynamics (1.1) of the state process.

The ingredients of the quantization approximation are described as follows:

¥ We denote by ö" a K -quantizer of the E-valued random variable "n+1 ; "1 (typi-
cally a Gaussian random variable), that is a discrete random variable on a grid ' =
{ e1, . . . , eK } " E K deÞned by

ö" = Proj " ("1) :=
KX

"=1

e"1%1# C`(") ,

where C1('), . . ., CK (') are Voronoi tesselations of ', i.e., Borel partitions of the
Euclidian space (E, |.|) satisfying

C"(') "
n

e ! E : |e# e" | = min
j =1 ,...,K

|e# ej |
o

.

The discrete law of ö" is then characterized by

öp" := P[ö" = e"] = P["1 ! C"(')] , ' = 1 , . . . , K.

The grid points (e") which minimize the L 2-quantization error *"1 # ö"* 2 lead to the
so-called optimal L -quantizer, and can be obtained by a stochastic gradient descent
method, known as Kohonen algorithm or competitive learning vector quantization
(CLVQ) algorithm, which also provides as a byproduct an estimation of the associated
weights (öp"). We refer to [28] for a description of the algorithm, and mention that for
the normal distribution, the optimal grids and the weights of the Voronoi tesselations
are precomputed on the website http://www.quantize.maths-Þ.com

¥ Recalling the dynamics (1.1), the conditional expectation operator is equal to

P öaM
n (x)W (x) = E

⇥
W (X öaM

n
n+1)|X n = x

⇤
= E

⇥
W (F (x, öaM

n (x), "1))
⇤
, x ! X ,

that we shall approximate analytically by quantization via:

bP öaM
n (x)W (x) := E

⇥
W (F (x, öaM

n (x), ö"))
⇤

=
KX

"=1

öp"W
�
F (x, öaM

n (x), e")
�

. (3.6)

The two stages of the regress-later are then detailed as follows:

12

(a) (Later) interpolation of the value function: Given a DNN $ (.; &) on Rd with para-
meters & ! Rp, we interpolate öV M

n+1 by

eV M
n+1 (x) := $

�
x; &M

n+1

�
,

where &M
n+1 is obtained via SGD (as described in paragraph 2.2) from the regression

of öV M
n+1 (X öaM

n
n+1) against $

⇣
X öaM

n
n+1 ; &

⌘
, using training samples X (m)

n , X öaM
n ,(m)

n+1 , m =

1, . . . , M of X n ; µn, and X öaM
n ,(m)

n+1 of X öaM
n

n+1 .

(b) Updating/approximation of the value function: by using the hat operator in (3.6)
for the approximation of the conditional expectation by quantization, we calculate
analytically

öV M
n (x) := f (x, a) + bP öaM

n eV M
n+1 (x) = f (x, a) +

KX

"=1

öp"$
�
F (x, öaM

n (x), e"); &M
n+1

�
.

Remark 3.3 Let us discuss and compare the Algos Hybrid-Now and Hybrid-LaterQ. When
regressing later, one just has to learn a deterministic function through the interpolation
step (a), as the noise is then approximated by quantization for getting analytical formula.
Therefore, compared to Hybrid-Now, the Hybrid-LaterQ Algo reduces the variance of the
estimate öV M

n . Moreover, one has a wide choice of loss functions when regressing later, e.g.,
MSE loss function, L1-loss, relative error loss, etc, while theL2-loss function is required
to approximate of condition expectation using regress-now method. However, although
quantization is quite easy and fast to implement in small dimension for the noise, it might
be not e#cient in high-dimension compared to Hybrid-Now. 2

Remark 3.4 Again, we point out that the estimated value function öV M
n in Hybrid-Now

or Hybrid-LaterQ depend on training samples X (m)
k , m = 1 , . . . , M , used at times k =

n, . . . , N , for computing the estimated optimal policies öaM
k , and this is emphasized through

the exponent M in the notations. 2

3.3 Training sets design

We discuss here the choice of the training measureµn used to generate the training sets on
which will be computed the estimations. Two cases are considered in this section. The Þrst
one is a knowledge-based selection, relevant when the controller knows with a certain degree
of conÞdence where the process has to be driven in order to optimize her cost functional.
The second case, on the other hand, is when the controller has no idea where or how to
drive the process to optimize the cost functional.

Exploitation only strategy

In the knowledge-based setting, there is no need for exhaustive and expensive (in time
mainly) exploration of the state space, and the controller can directly choose training sets
' n constructed from distributions µn that assign more points to the parts of the state space
where the optimal process is likely to be driven.

13

In practice, at time n, assuming we know that the optimal process is likely to stay in
the ball centered around the point mn and with radius rn , we choose a training measure
µn centered aroundmn as, for exampleN (mn, r 2

n), and build the training set as sample of
the latter.

Explore Þrst, exploit later

¥ Explore first: If the agent has no idea of where to drive the process to receive large
rewards, she can always proceed to an exploration step to discover favorable subsets
of the state space. To do so, 'n , the training sets at time n, for n = 0 , . . . , N # 1,
can be built as uniform grids that cover a large part of the state space, orµ can be
chosen uniform on such domain. It is essential to explore far enough to have a well
understanding of where to drive and where not to drive the process.

¥ Exploit later: The estimates for the optimal controls at time tn , n = 0 , . . . , N # 1,
that come up from the Explore first step, are relatively good in the way that they
manage to avoid the wrong areas of state space when driving the process. However,
the training sets that have been used to compute the estimated optimal control are
too sparse to ensure accuracy on the estimation. In order to improve the accuracy,
the natural idea is to build new training sets by simulating M times the process using
the estimates on the optimal strategy computed from theExplore first step, and then
proceed to another estimation of the optimal strategies using the new training sets.
This trick can be seen as a two steps algorithm that improves the estimate of the
optimal control.

3.4 Some remarks

We end this section with some comments about our proposed algorithms.

3.4.1 Case of Þnite control space: classiÞcation

In the case where the control spaceA is Þnite, i.e., Card(A) = L < + with A = { a1, . . . , aL } ,
one can think of the optimal control searching task as a problem of classiÞcation. This
means that we randomize the control in the sense that given a state valuex, the controller
choosesa" with a probability p"(x). We can then consider a neural network that takes
state x as an input, and returns at each timen a probability vector p = (p")" with softmax
output layer:

z (#) S"(z; *) =
exp(* " .z)

PL
"=1 exp(* " .z)

, ' = 1 , . . . , L,

after some hidden layers. Finally, in practice, we use pure strategies given a state valuex,
choosea"⇤(x) with

' ! (x) ! arg max
"=1 ,...,L

p" (x).

For example, theNNcontPI Algo with classiÞcation reads as follows:

14

¥ For n = N # 1, . . . , 0, keep track of the approximated optimal policies öak, k = n +
1, . . . , N # 1, and compute

ö* n ! arg min
$

E
h LX

"=1

p"(X n ; *)
⇣

f (X n , a") +
N " 1X

k= n+1

f
� öX "

k , öak(öX "
k)
�

+ g(öX "
N)
⌘i

,

where X n ; µn, öX "
n+1 = F (X n, a" , "n+1), öX "

k+1 = F (öX "
k , öak(öX "

k), "n+1), for k =
n + 1 , . . . , N # 1, ' = 1 , . . . , L .

¥ Update the approximate optimal policy at time n by

öan(x) = aö"n(x) with ö' n (x) ! arg max
"=1 ,...,L

p" (x; ö* n).

3.4.2 Comparison of the algorithms

We emphasize the pros (+) and cons (-) of the three proposed algorithms in terms of bias
estimate for the value function, variance, complexity and dimension for the state space.

Algo Bias estimate Variance Complexity Dimension Number of
time steps N

NNContPI + - - + --

Hybrid-Now - + + + +
Hybrid-LaterQ - ++ + - +

This table is the result of observations made when numerically solving various control prob-
lems, combined to a close look at the rates of convergence derived for the three algorithms
in Theorems 4.1, 4.2 and 4.3. Note that the sensibility of the NNContPI and the Hybrid-
LaterQ algorithms w.r.t. the number of time steps N is clearly described in the studies of
their rate of convergence achieved in Theorems 4.1 and 4.3. However, we could only provide
a weak result on the rate of convergence of the Hybrid algorithm (see Theorem 4.3), which
in particular does not explain why the latter does not su!er from large value of N , unless
stronger assumptions are made on the loss of the neural network estimating the optimal
controls.

4 Convergence analysis

This section is devoted to the convergence of the estimatoröV M
n of the value function Vn

obtained from a training sample of sizeM and using DNN algorithms listed in Section 3.
Training samples rely on a given family of probability distributions µn on X , for n =

0, . . . , N , refereed to as training distribution (see Section 3.3 for a discussion on the choice
of µ). For sake of simplicity, we consider that µn does not depend onn, and denote then
by µ the training distribution. We shall assume that the family of controlled transition
probabilities has a density w.r.t. µ, i.e.,

Pa(x, dx$) = r (x, a; x$)µ(dx$).

15

We shall assume thatr is uniformly bounded in (x, x $, a) ! X 2 $ A, and uniformly Lipschitz
w.r.t. (x, a), i.e.,

(Hd) There exists some positive constants*r *& and [r]L s.t.

|r (x, a; x$)| , * r *& , %x, x $! X , a ! A,

|r (x1, a1; x$) # r (x2, a2; x$)| , [r]L(|x1 # x2| + |a1 # a2|), %x1, x2 ! X , a1, a2 ! A.

Remark 4.1 Assumption (Hd) is usually satisÞed when the state and control space are
compacts. While the compactness on the control spaceA is not explicitly assumed, the
compactness condition on the state spaceX turns out to be more crucial for deriving
estimates on the estimation error (see Lemma 4.1), and will be assumed to hold true
for simplicity. Actually, this compactness condition on X can be relaxed by truncation
and localization arguments (see proposition A.1 in the appendix) by considering a training
distribution µ such that (Hd) is true and which admits a moment of order 1, i.e.

R
|y|dµ(y)

< + + . 2

We shall also assume some boundedness and Lipschitz condition on the reward functions:

(HR) There exists some positive constants* f *& , *g*& , [f]L , and [f]L s.t.

|f (x, a)| , * f *& , |g(x)| , * g*& , %x ! X , a ! A,

|f (x1, a1) # f (x2, a2)| , [f]L(|x1 # x2| + |a1 # a2|),

|g(x1) # g(x2)| , [g]L |x1 # x2|, %x1, x2 ! X , a1, a2 ! A.

Under this boundedness condition, it is clear that the value functionVn is also bounded:

Vn& , (N # n)* f *& + *g*& , %n ! { 0, ..., N } .

We shall Þnally assume a Lipschitz condition on the dynamics of the MDP.

(HF) For any e ! E , there existsC(e) such that for all couples (x, a) and (x$, a$) in X $ A:

��F (x, a, e) # F (x$, a$, e)
�� , C(e)

�
|x # x$| + |a # a$|

�
.

In the sequel, we deÞne for anyM ! N! :

%M = E

"
sup

1' m' M
C("m)

#
,

where the ("m)m is a i.i.d. sample of the noise" . The rate of convergence of%M toward
inÞnity will play a crucial role to show the convergence of the algorithms.

Remark 4.2 A typical example when (HF) holds is the case whereF is deÞned through
the time discretization of an Euler scheme, i.e., as

F (x, a, ") := b(x, a) + #(x, a)",

16

with b and # Lipschitz-continuous w.r.t. the couple (x, a), and " - N (0, I d), where I d is
the identity matrix of size d $ d. Indeed, in this case, it is straightforward to see that
C(") = [b]L + [#]L *"*d, where [b]L and [#]L stand for the Lipschitz coe#cients of b and #,
and *.*d stands for the Euclidean norm in Rd. Moreover, one can show that:

%M , [b]L + d[#]L
p

2 log(2dM), (4.1)

which implies in particular that

%M =
M (+ &

O
⇣p

log(M)
⌘

.

Let us indeed check the inequality (4.1). For this, let us Þx some integerM $ > 0 and let
Z := sup

1' m' M 0
|+m

1 | where +m
1 are i.i.d. such that +1

1 - N (0, 1). From Jentzen inequality to

the r.v. Z and the convex function z () exp(tz), where t > 0 will be Þxed later, we get

exp (tE [Z]) , E
⇥
exp

�
tZ
�⇤

, E

"
sup

1' m' M 0
exp

�
t |+m

1 |
�
#

,
M 0X

m=1

E
h

exp
�
t |+m

1 |
�i

, 2M $exp
� t2

2

�
,

where we used the closed-form expression of the moment generating function of the folded
normal distribution a to write the last inequality. Hence, we have for all t > 0:

E
⇥
Z
⇤

,
log(2M $)

t
+

t
2

.

We get, after taking t =
p

2 log(2M $):

E
⇥
Z
⇤

,
p

2 log(2M $). (4.2)

Since inequality *x*d , d*x*& holds for all x ! Rd, we derive

E

"
sup

1' m' M
C("m)

#
, [b]L + d[#]L E

"
sup

1' m' dM
C(+m

1)

#
,

and apply (4.2) with M $ = dM , to complete the proof of (4.1). 2

Remark 4.3 Under (Hd) , (HR) and (HF) , it is straightforward to see from the dy-
namic programming formula 1.3 that Vn is Lipschitz for all n = 0 , . . . , N , with a Lipschitz
coe#cient [Vn]L , which -can be bounded by the minimum of the two following bounds:

(
[VN]L = [g]L
[Vn]L , [f]L + *Vn*& [r]L , for n = 0 , . . . , N # 1.

and (
[VN]L = [g]L

[Vn]L , %1
1" &N�n

1
1" &1

+ %N " n
1 [g]L , for n = 0 , . . . , N # 1,

a
The folded normal distribution is defined as the distribution of |Z | where Z ⇠ N1(µ, !). Its moment

generating function is given by t 7! exp

!
�2 t2

2 + µt
" #

1 � �
$
�

µ
� � !t

%&
+exp

!
�2 t2

2 � µt
" #

1 � �
$
µ
� � !t

%&
,

where � is the c.d.f. of N1(0, 1).

17

which holds since we have by standard arguments:
(

[VN]L = [g]L
[Vn]L , [f]L + %1[Vn+1]L for n = 0 , . . . , N # 1.

Note that we use the usual convention 1" xp

1" x = p for p ! N! and x = 0. The Lipschitz
continuity of Vn plays a signiÞcant role to prove the convergence of the Hybrid and the
LaterQ algorithms described and studied in sections 4.2 and 4.3. 2

4.1 Control learning by performance iteration (NNcontPI)

In this paragraph, we analyze the convergence of the NN control learning by performance
iteration as described in Section 3.1. Actually, we shall consider neural networks for the
optimal policy with one hidden layer, K neurons with total variation b smaller than (, kernel
bounded by , , Relu activation function for the hidden layer, and activation function #A for
the output layer (in order to ensure that the NN is valued in A): this is represented by the
parametric set of functions

'A (
K :=

n
x ! X () A(x; *) = (A1(x; *), . . . , Aq(x; *)) ! A,

Ai (x; *) = #A

⇣ KX

j =1

cij (aij .x + bij)+ + c0j

⌘
, i = 1 , . . . , q,

* = (aij , bij , cij)i,j , aij ! Rd, *aij * , ,, b ij , cij ! R,
KX

i =0

|cij | , (
o

,

where * .* is the Euclidean norm in Rd.

Let K M , , M and (M be sequences of integers such that

K M ####)
M (&

+ , (M ####)
M (&

+ , , M ####)
M (&

+ ,

%N " 1
M (N " 1

M , N " 2
M

r
log(M)

M
####)
M (&

0.
(4.3)

We denote by A M := ' MA (M
kM

the class of neural network for policy with norm , M on the
kernel a = (aij), K M neurons and norm(M that satisfy conditions (4.3).

Remark 4.4 In the case whereF is deÞned in dimensiond as: F (x, a, ") = b(x, a) +
#(x, a)", we can use (4.1) to bound%N " n

M and get:

%N " n
M =

M (+ &
O
⇣p

log(M)
N " n⌘

.

2

b
The total variation for the class of NN A

�
K is equal to

' K
i=0 |cij | with the notations above. See e.g. [1]

for a general definition.

18

Recall that the approximation of the optimal policy in the NNcontPI algorithm is
computed in backward induction as follows: For n = N # 1, . . . , 0, generate a training
sample for the stateX (m)

n , m = 1 , . . . , M from the training distribution µ, and samples of
the exogenous noise

�
"m

k

�M,N
m=1 ,k= n+1 .

¥ Compute the approximated policy at time n

öaM
n ! argmin

A#A M

1
M

PM
m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i
(4.4)

where

öY (m),A
n+1 =

N " 1X

k= n+1

f
⇣

X (m),A
k , öaM

k

⇣
X (m),A

k

⌘⌘
+ g

⇣
X (m),A

N

⌘
, (4.5)

with
�
X (m),A

k

�N
k= n+1 deÞned by induction as follows, form=1 , . . . , M :

8
<

:
X (m),A

n+1 = F
⇣

X m
n , A

�
X m

n

�
, "m

n+1

⌘

X (m),A
k = F

⇣
X (m),A

k" 1 , A
�
X (m),A

k" 1

�
, "m

k

⌘
, for k = n + 2 , . . . , N.

¥ Compute the estimated value function öV M
n as in (3.2).

Remark 4.5 In order to simplify the theoretical analysis, we assume that the argmin in

(4.4) is exactly reached by running batch, mini-batch or stochastic gradient descent, which
are the methods that we used to code the algorithm in our companion paper. 2

Remark 4.6 The minimization problem in (4.4) is actually a problem of minimization
over the parameter * (of the neural network A) of the expectation of a function of noises�
X (m)

n
�M

m=1 ,
�
"m

k

�M,N
m=1 ,k= n+1 and * , where F is iterated many times. Stochastic-gradient-

based methods are chosen for such a task, although the gradient becomes more and more
di#cult to compute when we are going backward in time, since there are more and more
iterations of F involved in the derivatives of the gradients.

The integrand is di!erentiable if assumption (HF) holds, but it is always possible to
apply the stochastic-gradient-based algoritm for certain classes of non-di!erentiable func-
tions F (see e.g. the gradient-descent implementation inTensorFlow which works with
the non-di!erentiable at 0 ReLu activation functions.). 2

We now state our main result about the convergence of the NNcontPI algorithm.

Theorem 4.1 Assume that there exists an optimal feedback control (aopt
k)k= n,...,N " 1 for the

control problem with value function Vn , n = 0 , . . . , N , and let X n ; µ. Then, as M) + c

E
⇥öV M

n (X n) # Vn(X n)
⇤

= O

&N�n�1
M (N�n�1

M ' N�n�2
M)

M

+ sup
n' k' N " 1

inf
A#A M

E
h
|A(X k) # aopt

k (X k)|
i!

,

(4.6)

c
The notation xM = O(yM) as M ! 1, means that the ratio |xM |/ |yM | is bounded as M goes to infinity.

19

where E stands for the expectation over the training set used to evaluate the approximated

optimal policies (öaM
k)n' k' N " 1, as well as the path (X n)n' k' N controlled by the latter.

Moreover, as M) + d

EM
⇥öV M

n (X n) # Vn(X n)
⇤

= OP

%N " n" 1

M (N " n" 1
M , N " n" 2

M

r
log(M)

M

+ sup
n' k' N " 1

inf
A#A M

E
h
|A(X k) # aopt

k (X k)|
i!

,

(4.7)

where EM stands for the expectation conditioned by the training set used to estimate the

optimal policies (öaM
k)n' k' N " 1.

Remark 4.7 1. The term &N�n�1
M (N�n�1

M ' N�n�2
M)

M
should be seen as the estimation error. It

is due to the approximation of the optimal controls by means of neural networks inA M

using empirical cost functional in (4.4). We show in section A.2 that this term disappears
in the ideal case where the real cost functional (i.e. not the empirical one) is minimized.

2. The rate of convergence depends dramatically onN since it becomes exponentially
slower whenN goes to inÞnity. This is a huge drawback for this performance iteration-
based algorithm. We will see in the next section that the rate of convergence of value
iteration-based algorithms do not su!er from this dramatical dependence onN . 2

Comment : Since we clearly haveVn , öV M
n , estimation (4.6) implies the convergence

in L 1 norm of the NNcontPI algorithm, under condition (4.3), and in the case where
supn' k' N inf A#A M E

⇥
|A(X k) # aopt

k (X k)|
⇤

#####)
M (+ &

0. This is actually the case under some

regularity assumptions on the optimal controls, as stated in the following proposition.

Proposition 4.1 The two following assertions hold:

1. Assume that aopt
k (X k) ! L1(µ) for k = n, ..., N # 1. Then

sup
n' k' N " 1

inf
A#A M

E
⇥
|A(X k) # aopt

k (X k)|
⇤

#####)
M (+ &

0. (4.8)

2. Assume that the function aopt
k is c-Lipschitz for k = n, ..., N # 1. Then

sup
n' k' N " 1

inf
A#A M

E
⇥
|A(X k)# aopt

k (X k)|
⇤

< c
⇣ (M

c

⌘" 2d/ (d+1)
log
⇣ (M

c

⌘
+ (M K " (d+3) / (2d)

M .

(4.9)

Proof. The Þrst statement of Proposition 4.1 relies essentially on the universal approxima-
tion theorem, and the second assertion is stated and proved in [1]. For sake of completeness,
we recall the details in Section A.5 in the Appendix. 2

d
The notation xM = OP(yM) as M ! 1, means that there exists c > 0 such that P

$
|xM | > c |yM |

%
! 0

as M goes to infinity.

20

Remark 4.8 Note that the second statement in the above proposition is stronger than the
Þrst one since it provides a rate of convergence of the approximation error. FixingK M and
minimizing the r.h.s. of (4.9) over (M , results in

sup
n' k' N " 1

inf
A#A M

E
⇥
|A(X k) # aopt

k (X k)|
⇤

< cK
" 1

d
M

✓
1 +

d + 1
2d

log
�
K M

�◆
,

when we take(M = cK
d+1
2d

M . Hence, for such a value of(M , the l.h.s. decreases to 0 with
rate proportional to log(K M)/ d) K M . 2

The rest of this section is devoted to the proof of Theorem 4.1. Let us introduce some
useful notations. Denote byAX the set of Borelian functions from the state spaceX into
the control spaceA. For n = 0 , . . . , N # 1, and given a feedback control (policy) represented

by a sequence (Ak)k= n,...,N " 1, with Ak in AX , we denote byJ
(Ak)N�1

k=n
n the cost functional

associated to the policy (Ak)k . Notice that with this notation, we have öV M
n = J

(öaM
k)N�1

k=n
n .

We deÞne theestimation error at time n associated to the NNContPI algorithm by

"esti
PI ,n := sup

A#A M

���
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i
EM

⇥
J

A, (öaM
k)N�1

k=n+1
n (X n)

⇤���,

with X n ; µ: It measures how well the chosen estimator (e.g. mean square estimate) can
approximate a certain quantity (e.g. the conditional expectation). Of course we expect the
latter to cancel when the size of the training set used to build the estimator goes to inÞnity.
Actually, we have

Lemma 4.1 For n = 0 , . . . , N # 1, we have

E["esti
PI ,n] ,

�.
2 + 16

�
�
(N # n)* f *& + *g*&

�
.

M

+
16(M.

M

(
[f]L

1 + %M

1 # %N " n" 1
M

�
1 + , M (M

�N " n" 1

1 # %M
�
1 + , M (M

�
!

(4.10)

+
�
1 + , M (M

�N " n" 1%N " n
M [g]L

)

= O
✓

%N " n" 1
M (N " n" 1

M , N " n" 2
M.

M

◆
, as M) + .

This implies in particular that

"esti
PI ,n = OP

%N " n" 1

M (N " n" 1
M , N " n" 2

M

r
log(M)

M

!
, as M) + , (4.11)

where we remind that %M = E

"
sup

1' m' M
C("m)

#
is defined in (HF) .

21

Proof. The relation (4.10) states that the estimation error cancels whenM) + with a

rate of convergence of orderO
⇣

&N�n�1
M (N�n�1

M ' N�n�2
M)

M

⌘
. The proof is in the spirit of the one

that can be found in chapter 9 of [12]. It relies on a technique of symmetrization by a ghost
sample, and a wise introduction of additional randomness by random signs. The details
are postponed in Section A.3 in the Appendix. The proof of (4.11) follows from (4.10) by
a direct application of Markov inequality. 2

Let us also deÞne theapproximation error at time n associated to the NNContPI algo-
rithm by

"approx
PI ,n := inf

A#A M

EM

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i
inf

A# AX
EM

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i
, (4.12)

where we recall that EM denotes the expectation conditioned by the training set used to
compute the estimates (öaM

k)N " 1
k= n+1 and the one ofX n ; µ.

"approx
PI ,n measures how well the regression function can be approximated by means of neural

networks functions in A M (notice that the class of neural networks is not dense in the set
AX of all Borelian functions).

Lemma 4.2 For n = 0 , . . . , N # 1, it holds as M) + ,

E["approx
PI ,n] = O

%N " n" 1

M (N " n" 1
M , N " n" 2

M.
M

+ sup
n' k' N " 1

inf
A#A M

E
⇥
|A(X k) # aopt

k (X k)|
⇤
!

.

(4.13)

This implies in particular

"approx
PI ,n = OP

%N " n" 1

M (N " n" 1
M , N " n" 2

M

r
log(M)

M
+ sup

n' k' N " 1
inf

A#A M

E
⇥
|A(X k) # aopt

k (X k)|
⇤
!

.

(4.14)

Proof. See Section A.4 in Appendix for the proof of (4.13). The proof of (4.14) then
follows by a direct application of Markov inequality. 2

Proof of Theorem 4.1.
Step 1. Let us denote by

öJ
A, (öaM

k)N�1
k=n+1

n,M :=
1

M

MX

m=1

h
f
�
X (m)

n , A(X (m)
n)

�
+ öY (m),A

n+1

i
,

the empirical cost function, from time n to N , associated to the sequence of controls
(A, (öaM

k)N " 1
k= n+1 , , öaM

N " 1) and the training set, where we recall that öY (m),A
n+1 is deÞned in (4.5).

We then have

EM
⇥öV M

n (X n)
⇤

= EM

h
J

(öaM
k)N�1

k=n
n (X n)

i
öJ

(öaM
k)N�1

k=n
n,M + öJ

(öaM
k)N�1

k=n
n,M

, "esti
PI ,n + öJ

(öaM
k)N�1

k=n
n,M , (4.15)

22

by deÞnition of öV M
n and "esti

PI ,n . Moreover, for any A ! A M ,

öJ
A, (öaM

k)N�1
k=n+1

n,M = öJ
A, (öaM

k)N�1
k=n+1

n,M # EM

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i
+ EM

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i

, " esti
PI ,n + EM

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i
. (4.16)

Recalling that

öaM
n = argmin

A#A M

öJ
A, (öaM

k)N�1
k=n+1

n,M ,

and taking the inÞmum over A M in the l.h.s. of (4.16) Þrst, and in the r.h.s. secondly, we
then get

öJ
(öaM

k)N�1
k=n

n,M , "esti
PI ,n + inf

A#A M

EM

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i
.

Plugging this last inequality into (4.15) yields the following estimate

EM
⇥öV M

n (X n)
⇤

inf A#A M EM

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i
, 2"esti

PI ,n . (4.17)

Step 2. By deÞnition (4.12) of the approximation error, using the law of iterated conditional
expectations forJn , and the dynamic programming principle for Vn with the optimal control
aopt

n at time n, we have

inf
A#A M

EM
⇥
J

A, (öaM
k)N�1

k=n+1
n (X n)

⇤
EM [Vn(X n)]

= "approx
PI ,n + inf

A# AX
EM
�

f (X n , A(X n)) + EA
n

⇥
J

(öaM
k)N�1

k=n+1
n+1 (X n+1)

⇤

EM

h
f (X n , aopt

n (X n)) + Eaopt
n

n

⇥
Vn+1 (X n+1)

⇤i

, " approx
PI ,n + EM Eaopt

n
n

h
J

(öaM
k)N�1

k=n+1
n+1 (X n+1) # Vn+1 (X n+1)

i
,

where EA
n [.] stands for the expectation conditioned byX n at time n and the training set,

when strategy A is followed at time n. Under the bounded density assumption in(Hd) ,
we then get

inf
A#A M

EM
⇥
J

A, (öaM
k)N�1

k=n+1
n (X n)

⇤
EM [Vn(X n)]

, " approx
PI ,n + *r *&

Z ⇥
J

(öaM
k)N�1

k=n+1
n+1 (x$) # Vn+1 (x$)

⇤
µ(dx$)

, "approx
PI ,n + *r *& EM

h
öV M

n+1 (X n+1) # Vn+1 (X n+1)
i
, with X n+1 - µ. (4.18)

Step 3. From (4.17) and (4.18), we have

EM
⇥öV M

n (X n) # Vn(X n)
⇤

= EM
⇥öV M

n (X n)
⇤

inf
A#A M

EM
⇥
J

A, (öaM
k)N�1

k=n+1
n (X n)

⇤i

+ inf
A#A M

EM
⇥
J

A, (öaM
k)N�1

k=n+1
n (X n)

⇤
EM [Vn(X n)]

, 2"esti
PI ,n + "approx

PI ,n

+ *r *& EM

h
öV M

n+1 (X n+1) # Vn+1 (X n+1)
i
. (4.19)

23

By induction, this implies

EM
⇥öV M

n (X n) # Vn(X n)
⇤

,
N " 1X

k= n

�
2"esti

PI ,k + "approx
PI ,k

�
.

Use the estimations (4.11) for"esti
PI ,n in Lemma 4.1, and (4.14) for "approx

PI ,n in Lemma 4.2,

and observe that öVn(X n) ' Vn(X n) holds a.s., to complete the proof of (4.7). Finally, the
proof of (4.6) is obtained by taking expectation in (4.19), and using estimations (4.10) and
(4.13). 2

4.2 Hybrid-Now algorithm

In this paragraph, we analyze the convergence of the hybrid-now algorithm as described in
Section 3.2.1. We shall consider neural networks for the value function estimation with one
hidden layer, K neurons with total variation (, kernel bounded by, , a sigmoid activation
function # for the hidden layer, and no activation function for the output layer (i.e. the
last layer): this is represented by the parametric set of functions

' V(
K :=

n
x ! X () $(x; &) =

KX

i =1

ci #(ai .x + bi) + c0,

&= (ai , bi , ci)i , *ai * , ,, b i ! R,
KX

i =0

|ci | , (
o

.

Let , M , K M and (M be integers such that:

, M ####)
M (&

+ , (M ####)
M (&

+ + , K M ####)
M (&

+ ,
(4
MK M log(M)

M ####)
M (&

0 , (4
M&2

M ' 2
M log(M)
M ####)

M (&
0,

(4.20)

where we remind that %M is deÞned in(HF) .
In the sequel we denote byVM := ' MV(M

K M
the space of neural networks for the estimated

value functions at time n = 0 , . . . , N # 1, parametrized by the values, M , (M and K M that
satisfy (4.20). We also consider the classA M of neural networks for estimated feedback
optimal control at time n = 0 , . . . , N # 1, as described in Section 4.1, with the same
parameters , M , (M and K M .

Recall that the approximation of the value function and optimal policy in the hybrid-
now algorithm is computed in backward induction as follows:

¥ Initialize öV M
N = g

¥ For n = N # 1, . . . , 0, generate a training sampleX (m)
n , m = 1 , . . . , M from the training

distribution µ, and a training sample for the exogenous noise" (m)
n+1 , m = 1 , . . . , M .

(i) compute the approximated policy at time n

öaM
n ! argmin

A#A M

1
M

MX

m=1

⇥
f (X (m)

n , A(X (m)
n)) + öV M

n+1 (X (m),A
n+1)

⇤

where X (m),A
n+1 = F (X (m)

n , A(X (m)
n), " (m)

n+1) ; PA(X (m)
n) (X (m)

n , dx$).

24

(ii) compute the untruncated estimation of the value function at time n

÷V M
n ! argmin

! #VM

1
M

MX

m=1

h
f (X (m)

n , öaM
n (X (m)

n)) + öV M
n+1 (X (m),öaM

n
n+1) # $(X (m)

n)
i2

and set the truncated estimated value function at time n

öV M
n = max

⇣
min

�
V M

n , *Vn*&
�
, #* Vn*&

⌘
. (4.21)

Remark 4.9 Notice that we have truncated the estimated value function in (4.21) by
an a priori bound on the true value function. This truncation step is natural from a
practical implementation point of view, and is also used for simplifying the proof of the
convergence of the algorithm. The conditions in (4.20) for the parameters are weaker than
those required in (4.3) for the NNcontPI algo by performance iteration, which implies a
much faster convergence w.r.t. the size of the training set. However, one should keep in
mind that unlike the performance iteration procedure, the value iteration one is biased
since the computation of öV M

n+1

�
X A

n+1

�
are biased future rewards when decisionA is taken

at time n and estimated optimal strategies are taken at timek ' n + 1. 2

We now state our main result about the convergence of the Hybrid-Now algorithm.

Theorem 4.2 Assume that there esxists an optimal feedback control (aopt
k)k= n,...,N " 1 for

the control problem with value function Vn , n = 0 , . . . , N , and let X n ; µ. Then, as

M) + +

EM

h
| öV M

n (X n) # Vn(X n)|
i

= OP

 ✓
(4

M
K M log(M)

M

◆ 1
2(N�n)

+
✓

(4
M

%2
M , 2

M log(M)
M

◆ 1
4(N�n)

+ sup
n' k' N

inf
! #VM

⇣
EM

h
|$(X k) # Vk(X k)|2

i⌘ 1
2(N�n)

+ sup
n' k' N

inf
A#A M

⇣
E
h
|A(X k) # aopt

k (X k)|
i⌘ 1

2(N�n)

!
,

(4.22)

where EM stands for the expectation conditioned by the training set used to estimate the

optimal policies (öaM
k)n' k' N " 1.

Comment: Theorem 4.2 states that the estimator for the value function provided by
hybrid-now algorithm converges in L1(µ) when the size of the training set goes to inÞnity.

Note that the term
⇣

(4
M

K M log(M)
M

⌘ 1
2(N�n) stands for the estimation error made by esti-

mating empirically the value functions using neural networks, and
⇣

(4
M

&2
M ' 2

M log(M)
M

⌘ 1
4(N�n)

stands for the estimation error made by estimatingempirically the optimal control using

neural networks. The term sup
n' k' N

inf
! #VM

r
E
h
|$(X k) # Vk(X k)|2

i
stands for the approxi-

mation error made by estimating the value function as a neural network function in VM ,

25

and sup
n' k' N

inf
A#A M

E
h
|A(X k) # aopt

k (X k)|
i

is the one made by estimating the optimal control

as a neural network function in A M .

In order to prove Theorem 4.2, let us Þrst introduce the estimation error at time n
associated to the Hybrid-Now algorithm by

"esti
HN ,n := sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i

EA
M,n,X n

h
f (X n , A(X n)) + öV M

n+1

�
X n+1

�i
�����,

where

öY (m),A
n+1 = öV M

n+1

�
X (m),A

n+1

�
,

and X (m),A
n+1 = F

⇣
X (m)

n , A(X (m)
n), "m

n+1

⌘
.

We have the following bound on this estimation error:

Lemma 4.3 For n = 0 , ..., N # 1, it holds:

E
⇥
"esti

HN ,n

⇤
,

�.
2 + 16

��
(N # n)* f *& + *g*&

�
+ 16[f]L.

M
+ 16

%M , M (2
M.

M

=
M (&

O
✓

%M , M (2
M.

M

◆
. (4.23)

Proof. See Section A.6 in Appendix. 2

Remark 4.10 The result stated by lemma 4.3 is sharper than the one stated in Lemma
4.1 for the performance iteration procedure. The main reason is that we can make use of
the (M , M -Lipschitz-continuity of the estimation of the value function at time n + 1. 2

We secondly introduce the approximation error at time n associated to the Hybrid-Now
algorithm by

"approx
HN ,n := inf

A#A M

EM

h
f
�
X n, A(X n)

�
+ öY A

n+1

i
inf

A# AX
EM

h
f
�
X n, A(X n)

�
+ öY A

n+1

i
,

where öY A
n+1 := öV M

n+1 (F (X n, A(X n), "n+1)).

We have the following bound on this approximation error:

Lemma 4.4 For n = 0 , ..., N # 1, it holds:

"approx
HN ,n , ([f]L + *Vn+1 *& [r]L) inf

A# AX
EM

⇥��A(X n) # aopt
n (X n)

��⇤

+ 2*r *& EM

h���Vn+1 (X n+1) # öV M
n+1 (X n+1)

���
i

.
(4.24)

26

Proof. See Section A.7 in Appendix. 2

Proof of Theorem 4.2
Observe that not only the optimal strategy but also the value function is estimated at each
time step n = 0 , ..., N # 1 using neural networks in the hybrid algorithm. It spurs us to
introduce the following auxiliary process (øV M

n)N
n=0 deÞned by backward induction as:

8
<

:

øV M
N (x) = g(x), for x ! X ,

øV M
n (x) = f (x, öaM

n (x)) + E
h

öV M
n+1 (F (x, öaM

n (x), "n+1))
i
, for x ! X ,

and we notice that for n = 0 , ..., N # 1, øV M
n is the quantity estimated by öV M

n .

Step 1. We state the following estimates: forn = 0 , ..., N # 1,

0 , EM


øV M

n (X n) # inf
a# A

n
f (X n , a) + Ea

M,n,X n

h
öV M

n+1 (X n+1)
io�

, 2"esti
HN ,n + "approx

HN ,n , (4.25)

and,

EM

"����øV
M

n (X n) # inf
a# A

n
f (X n , a) + Ea

M,n,X n

h
öV M

n+1 (X n+1)
io����

2
#

, 2 ((N # n)* f *& + *g*&)
⇣

2"esti
HN ,n + "approx

HN ,n

⌘
,

(4.26)

where EM,n,X n stands for the expectation conditioned by the training set andX n.

Let us Þrst show the estimate (4.25). Note that inequality

øV M
n (X n) # inf

a# A

n
f (X n , a) + Ea

M,n,X n

h
öV M

n+1 (X n+1)
io

' 0

holds because öaM
n cannot do better than the optimal strategy. Take its expectation to get

the Þrst inequality in (4.25). Moreover, we write

EM
⇥øV M

n (X n)
⇤

, EM

h
f
�
X n, öaM

n (X n)
�

+ öV M
n+1

⇣
X öaM

n
n+1

⌘i

, inf
A#A M

EM

h
f (X n , A(X n)) + öV M

n+1

�
X A

n+1

�i
+ 2"esti

HN ,n ,

which holds by the same arguments as those used to prove (4.17). We deduce that

EM
⇥øV M

n (X n)
⇤

, inf
A# AX

EM

h
f (X n , A(X n)) + öV M

n+1

�
X A

n+1

�i
+ "approx

HN ,n + 2 "esti
HN ,n

, EM


inf
a# A

n
f (X n , a) + Ea

M

h
öV M

n+1 (X n+1)
��X n

io�
+ "approx

HN ,n + 2 "esti
HN ,n .

This completes the proof of the second inequality stated in (4.25). On the other hand, not-

ing

����øV
M

n (X n) # inf
a# A

n
f (X n , a) + Ea

M

h
öV M

n+1 (X n+1)
��X n

io���� , 2 ((N # n)* f *& + *g*&) and

applying (4.25), we obtain the inequality (4.26).

27

Step 2. We state the following estimation: for all n ! { 0, ..., N }

���öV M
n (X n) # øV M

n (X n)
���

M, 1
= OP

(2

M

r
K M

log(M)
M

+ inf
! #VM

q
*$(X n) # V M

n (X n)*M, 1

+ inf
A# AX

r���A(X n) # aopt
n (X n)

���
M, 1

+
r���Vn+1 (X n+1) # öV M

n+1 (X n+1)
���

M, 1

!
,

(4.27)

where* .*M,p stands for theLp norm conditioned by the training set, i.e. * .*M,p =
⇣

EM [|.|p]
⌘ 1

p ,

for p ! { 1, 2} . The proof relies on Lemma A.1 and Lemma A.2 (see Section A.8 in Ap-
pendix) which are proved respectively in [18] (see their Theorem 3) and [19].

Let us Þrst show the following relation:

EM

h��öV M
n (X n) # øV M

n (X n)
��2
i

= OP

✓
(4

M K M
log(M)

M
+ inf

! #VM

E
h
|$(X n) # øV M

n (X n)|2
i◆

.

(4.28)
For this, take -M = (4

M K M
log(M)

M , and let - > - M . Apply Lemma A.2 to obtain:

Z)
)

c2)/(2
M

log

N2

✓
u

4(M
,
⇢

f # g : f ! V M ,
1

M

MX

m=1

��f (xm) # g(xm)
��2 ,

-
(2

M

�
, xM

1

◆!1/ 2

du

,
Z)

)

c2)/(2
M

log
✓

N2

✓
u

4(M
, VM , xM

1

◆◆1/ 2

du

,
Z)

)

c2)/(2
M

�
(4d + 9) K M + 1

�1/ 2

"
log

48e(2

M

�
K M + 1

�

u

!#1/ 2

du

,
Z)

)

c2)/(2
M

�
(4d + 9) K M + 1

�1/ 2

log
✓

48e
(4

M

-

�
K M + 1

�◆�1/ 2

du

,
.

-
�
(4d + 9) K M + 1

�1/ 2 ⇥log
�
48e(4

M M
�
K M + 1

��⇤1/ 2

, c5
.

-
p

K M

p
log(M), (4.29)

where N2(", V, xM
1) stands for the "-covering number of V on xM

1 , which is introduced in
section A.8, and where the last line holds since we assumedM) M

(2
M

###)
M (0

0. Since - >

-M := (4
M K M

log(M)
M , we then have

.
-
.

K M
p

log(M) ,
)

M)
(2
M

, which implies that (A.33)

holds by (4.29). Therefore, by application of Lemma A.1, it holds:

EM

h��÷V M
n (X n) # øV M

n (X n)
��2
i

= OP

✓
(4

M K M
log(M)

M
+ inf

! #VM

E
h
|$(X n) # øV M

n (X n)|2
i◆

.

It remains to note that EM

h��öV M
n (X n) # øV M

n (X n)
��2
i

, EM

h��÷V M
n (X n) # øV M

n (X n)
��2
i

always

holds, and this completes the proof of (4.28).

28

Next, let us show

inf
! #VM

��$(X n) # øVn(X n)
��

M, 2

= O

(2

M

r
K M log(M)

M
+ sup

n' k' N
inf

! #VM

*$(X n) # Vn(X n)*M, 2

+ inf
A#A M

EM
⇥��A(X n) # aopt

n (X n)
��⇤ +

���Vn+1 (X n+1) # öV M
n+1 (X n+1)

���
M, 2

!
.(4.30)

For this, take some arbitrary $! V M and split

inf
! #VM

��$(X n) # øV M
n (X n)

��
M, 2 , inf

! #VM

*$(X n) # Vn(X n)*M, 2 +
��Vn(X n) # øV M

n (X n)
��

M, 2 .

(4.31)
To bound the last term in the r.h.s. of (4.31), we write

��Vn(X n) # øV M
n (X n)

��
M, 2 ,

����Vn(X n) # inf
a# A

n
f (X n , a) + Ea

M

h
öV M

n+1 (X n+1)
��X n

io����
M, 2

+

���� inf
a# A

n
f (X n , a) + Ea

M

h
öV M

n+1 (X n+1)
��X n

io
øV M

n (X n)

����
M, 2

Use the dynamic programming principle, assumption(Hd) and (4.26) to get:
��Vn(X n) # øV M

n (X n)
��

M, 2 , * r *&

���Vn+1 (X n+1) # öV M
n+1 (X n+1)

���
M, 2

+

r
2 ((N # n)* f *& + *g*&)

⇣
2"esti

HN ,n + "approx
HN ,n

⌘
.

We then notice that
���Vn+1 (X n+1) # öV M

n+1 (X n+1)
���
2

, 2*r *& ((N # n)* f *& + *g*&)
���Vn+1 (X n+1) # öV M

n+1 (X n+1)
���

holds a.s., so that

��Vn(X n) # øV M
n (X n)

��
M, 2 ,

r
2*r *& ((N # n)* f *& + *g*&)

���Vn+1 (X n+1) # öV M
n+1 (X n+1)

���
M, 1

+

r
2 ((N # n)* f *& + *g*&)

⇣
2"esti

HN ,n + "approx
HN ,n

⌘
,

and use Lemma 4.4 to bound"approx
HN ,n . By plugging into (4.31), and using the estimations in

Lemmas 4.3 and 4.4, we obtain the estimate (4.30). Together with (4.28), this proves the
required estimate (4.27). By induction, we get asM) + ,

EM

h
| öV M

n (X n) # Vn(X n)|
i

= OP

 ✓
(4

M
K M log(M)

M

◆ 1
2(N�n)

+
✓

(4
M

%2
M , 2

M log(M)
M

◆ 1
4(N�n)

+ sup
n' k' N

inf
! #VM

⇣
EM

h
|$(X k) # Vk(X k)|2

i⌘ 1
2(N�n)

+ sup
n' k' N

inf
A#A M

⇣
E
h
|A(X k) # aopt

k (X k)|
i⌘ 1

2(N�n)

!
,

which completes the proof of Theorem 4.2. 2

29

4.3 Hybrid-LaterQ algorithm

In this paragraph, we analyze the convergence of the Hybrid-LaterQ algorithm described
in Section 3.2.2.

We shall make the following assumption onF to ensure the convergence of the Hybrid-
LaterQ algorithm.
(HF-LQ) AssumeF to be such that:

1. (Estimation error Assumption) (HF) holds, i.e. for all e ! E , there exists C(e) > 0
such that for all couples (x, a) and (x$, a$) in X $ A:

��F (x, a, ") # F (x$, a$, ")
�� , C(")

�
|x # x$| + |a # a$|

�
.

Recall that for all integer M > 0, %M is deÞned as

%M = E
h

sup
1' m' M

C("m)
i
,

where the ("m)m is a i.i.d. sample of the noise" .

2. (Quantization Assumption) There exists a constant [F]L > 0 such that for all (x, a) !
X $ A and all pair of r.v. (", " $), it holds:

*F (x, a, ") # F (x, a, " $)*2 , [F]L *" # "$*2.

As for the hybrid-now algorithm, we shall consider neural networks for the value function
estimation with one hidden layer, K neurons with total variation (, kernel bounded by, ,
a sigmoid activation function # for the hidden layer, and no activation function for the
output layer (i.e. the last layer), which is represented by the parametric set of function
' V(

K . Let , M , K M and (M be integers such that:

K M ####)
M (&

+ , (M ####)
M (&

+ , , M ####)
M (&

+

%M , M (2
M

q
log(M)

M ####)
M (&

0.
(4.32)

In the sequel we denote byVM := ' MV(M
K M

the space of neural networks parametrized by
the values , M , (M and K M that satisfy (4.32). We also consider the classA M of neural
networks for estimated feedback optimal control at time n = 0 , . . . , N # 1, as described in
Section 4.1, with the same parameters, M , (M and K M .

Recall that the approximation of the value function and optimal policy in the Hybrid-
LaterQ algorithm is computed in backward induction as follows:

¥ Initialize öV M
N = g

¥ For n = N # 1, . . . , 0, generate a training sampleX (m)
n , m = 1 , . . . , M from the training

distribution µ, and a training sample for the exogenous noise" (m)
n+1 , m = 1 , . . . , M .

30

(i) compute the approximated policy at time n

öaM
n ! argmin

A#A M

1
M

MX

m=1

⇥
f (X (m)

n , A(X (m)
n)) + öV M

n+1 (X (m),A
n+1)

⇤

where X (m),A
n+1 = F (X (m)

n , A(X (m)
n), " (m)

n+1) ; PA(X (m)
n) (X (m)

n , dx$).

(ii) compute an untruncated interpolation of the value function at time n + 1

÷V M
n+1 ! argmin

! #VM

1
M

PM
m=1

h
öV M

n+1 (X (m),öaM
n

n+1) # $
�
X (m),öaM

n
n+1

�i2
, (4.33)

and set the truncated interpolation of the value function at time n + 1

÷V trun
n+1 = max

⇣
min

�÷V M
n+1 , *Vn+1 *&

�
, #* Vn+1 *&

⌘
.

(iii) update/compute the estimated value function

öV M
n (x) = f (x, öaM

n (x)) +
LX

"=1

p" ÷V trun
n+1

�
F (x, öaM

n (x), e")
�
,

where ö"n is a L-optimal quantizer of "n on the grid { e1, . . . , eL } with weights
(p1, . . . , pL).

Remark 4.11 1. It is straightforward to see that the neuronal network functions in VM

are Lipschitz with Lipschitz coe#cient bounded by , M (M . We highly rely on this property
to show the convergence of the Hybrid-LaterQ algorithm.

2. Note that (4.33) is an interpolation step. In the pseudo-code above, we decided to
interpolate the value function ÷V Q

n using neural networks in VM by reducing an empirical
quadratic norm. However, we could have chosen other families of functions and other loss
criterion to minimize. Gaussian processes have been recently reconsidered to interpolate
functions, see [25]. 2

We now state our main result about the convergence of the Hybrid-LaterQ algorithm.

Theorem 4.3 Assume that there esxists an optimal feedback control (aopt
k)k= n,...,N " 1 for

the control problem with value function Vn , n = 0 , . . . , N . Take X n ; µ, and let L M be a

sequence of integers such that

L M ####)
M (&

+ , and ' M (M

L 1/d
M

####)
M (&

0.

Take L M points for the optimal quantization of the exogenous noise. Then, it holds as

M) + :

EM
⇥
| öV M

n (X n) # Vn(X n)|
⇤

= OP

%M , M (2

M

r
log(M)

M
+

, M (M

L 1/d
M

+ sup
n' k' N

inf
A#A M

E
⇥
|A(X k) # aopt

k (X k)|
⇤

+ sup
n+1 ' k' N

inf
! #VM

E [|$(X k) # Vk(X k)|]

!
. (4.34)

31

Comment: Theorem 4.3, combined to Proposition 4.1, show that estimatoröV M
n provided

by Hybrid-LaterQ algorithm is consistent, i.e. converges inL1 toward the value function
Vn at time n when the number of points for the regression and quantization goes to inÞnity.

Remark 4.12 Note that the dimension d of the state space appears (explicitly) in the
quantization error written in (4.34), as well as (implicitly) in the approximation errors
associated to the value functions and optimal control learning. See for example (4.9) for
an explicit dependence of the approximation error ond. 2

In order to prove Theorem 4.3, let us introduce the estimation error at time n associated
to the Hybrid-LaterQ algorithm by

"esti
LQ ,n := sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i

EA
M,n,X n

h
f (X n , A(X n)) + öV M

n+1

�
X n+1

�i
�����,

where öY (m),A
n+1 = öV M

n+1

�
X (m),A

n+1

�
, and EA

M,n,X n
[.] stands for the expectation conditioned by

the training set and X n when decisionA has been taken at timen.

We have the following bound on this estimation error:

Lemma 4.5 For n = 0 , . . . , N # 1, it holds:

E
⇥
"esti

LQ ,n

⇤
,

�.
2 + 16

��
(N # n)* f *& + *g*&

�
+ 16[f]L.

M
+ 16

%M , M (2
M.

M

=
M (&

O
✓

%M , M (2
M.

M

◆
. (4.35)

Moreover,

EM
⇥
"esti

LQ ,n

⇤
=

M (&
O

%M , M (2

M

r
log(M)

M

!
. (4.36)

Remark 4.13 The result stated in Lemma 4.5 is the same as the one stated in Lemma 4.3
for the hybrid-now algorithm. This result can actually be proved using the same arguments,
so we omit the proof here. 2

Next, we introduce the approximation error at time n associated to the Hybrid-LaterQ
algorithm by

"approx
LQ ,n = inf

A#A M

EM

h
f
�
X n, A(X n)

�
+ öY A

n+1

i
inf

A# AX
EM

h
f
�
X n, A(X n)

�
+ öY A

n+1

i
,

where öY A
n+1 := öV M

n+1 (F (X n, A(X n), "n+1)).

We have the following bound on this approximation error, which is similar to the one
stated in Lemma 4.4 for the Hybrid-Now algorithm. The proof is similar and is thus omitted
here.

32

Lemma 4.6 For n = 0 , ..., N # 1, it holds:

"approx
LQ ,n , ([f]L + [r]L *Vn+1 *&) inf

A# AX
EM

⇥��A(X n) # aopt
n (X n)

��⇤

+ 2*r *& EM

h���Vn+1 (X n+1) # öV M
n+1 (X n+1)

���
i

.
(4.37)

Proof of Theorem 4.3.
We split the L 1 norm as follows:

���öV M
n (X n) # Vn(X n)

���
M, 1

,
���öV M

n # øV M
n

���
M, 1

+
��øV M

n # øV opt
n

��
M, 1 (4.38)

+
��øV opt

n # Vn
��

M, 1 ,

where (øV M
n)n is deÞned as:

(
øV M

N (x) = g(x)
øV M

n (x) = f (x, öaM
n (x)) + EM

⇥÷V trunc
n+1

�
F (x, öaM

n (x), "n+1)
�⇤

, n = 0 , . . . , N # 1,

and (øV opt
n)n is deÞned as:

(
øV opt

N (x) = g(x)
øV opt

n (x) = inf a# A

n
f (x, a) + EM

⇥÷V trunc
n+1

�
F (x, a, " n+1)

�⇤o
, n = 0 , . . . , N # 1.

Recall that * .*M,p = (EM [|.|p])
1
p stands for the Lp-norm conditioned by the training set,

for p ! { 1, 2} .

Step 1: The Þrst term in the r.h.s. of (4.38) is the quantization error. We show that

���öV M
n # øV M

n

���
M, 1

= OP

, M (M

L 1/d
M

!
, as M) + . (4.39)

Denote by "Q
p := * öV M

n (X n) # øV M
n (X n)*p the Lp-quantization error, for p ! { 1, 2} . Since

÷V trunc
n is Lipschitz, for n ! { 0, ..., N } , with its Lipschitz coe#cient bounded by , M (M , we

thus get:

"Q
2 := * öV M

n (X n) # øV M
n (X n)*2 , , M (M [F]L * ö"n+1 # "n+1 *2, (4.40)

from assumption (HF-LQ) . Now, recall by Zador theorem about optimal quantization (see
[10]) that there exists some positive constantC such that

lim
M (+ &

⇣
L

2
d
M * ö"n+1 # "n+1 *2

2

⌘
= C.

By using Zador theorem in (4.40) and with inequality "Q
1 , "Q

2 , we obtain the bound (4.39)
for the quantization error.

Step 2: We show: asM) + ,

���÷V trunc
n+1 (X n+1) # öV M

n+1 (X n+1)
���

M, 1
= OP

 r
log(M)

M
+ inf

! #VM

*$(X n+1) # Vn+1 (X n+1)*M, 1

+
���Vn+1 (X n+1) # öV M

n+1 (X n+1)
���

2

2

!
. (4.41)

33

Denote by

öRn+1

⇣
÷V trunc

n+1

⌘
=

1
M

MX

m=1

���÷V trunc
n+1 (X (m)

n+1) # öV M
n+1 (X (m)

n+1)
���
2

the empirical quadratic risk, and by

Rn+1

⇣
÷V trunc

n+1

⌘
= EM

���÷V trunc
n+1 (X n+1) # öV M

n+1 (X n+1)
���
2
�

its associated quadratic risk. From the central limit theorem, we have

öRn+1

⇣
÷V trunc

n+1

⌘
Rn+1

⇣
÷V trunc

n+1

⌘

#M,n +1
.

M
L####)

M (&
N (0, 1)

where #M,n +1 is the standard variation conditioned by the training set, deÞned as

#2
M,n +1 = Var M

✓���÷V trunc
n+1 (X n+1) # öV M

n+1 (X n+1)
���
2
◆

.

Use inequality ÷V trunc
n+1 (X n+1) # öV M

n+1 (X n+1) , (N # n)* f *& + *g*& to bound #M,n +1 by a
constant that does not depend onM , and get

Rn+1

⇣
÷V trunc

n+1

⌘
= OP

 r
log(M)

M
+

1
M

MX

m=1

���÷V trunc
n+1 (X (m)

n+1) # öV M
n+1 (X (m)

n+1)
���
2
!

,

which, after noticing that

1
M

MX

m=1

���÷V trunc
n+1 (X (m)

n+1) # öV M
n+1 (X (m)

n+1)
���
2

,
1

M

MX

m=1

���÷V M
n+1 (X (m)

n+1) # öV M
n+1 (X (m)

n+1)
���
2

,

implies:

Rn+1

⇣
÷V trunc

n+1

⌘
= OP

 r
log(M)

M
+ inf

! #VM

1
M

MX

m=1

���$(X (m)
n+1) # öV M

n+1 (X (m)
n+1)

���
2
!

. (4.42)

Once again from the central limit theorem, we derive:

inf
�2VM

1
M

MX

m=1

���$(X (m)
n+1) # öVM

n+1(X (m)
n+1)

���
2

= OP

 r
log(M)

M
+ inf

�2VM

���$(X n+1) # öVM
n+1(X n+1)

���
2

2

!
.

(4.43)

Indeed, Þrst write

P

inf

! #VM

1
M

MX

m=1

���$(X (m)
n+1) # öV M

n+1 (X (m)
n+1)

���
2

,

r
log(M)

M
+ inf

! #VM

���$(X n+1) # öV M
n+1 (X n+1)

���
2

2

!

, P

1

M

MX

m=1

���$(X (m)
n+1) # öV M

n+1 (X (m)
n+1)

���
2

,

r
log(M)

M
+ inf

! #VM

���$(X n+1) # öV M
n+1 (X n+1)

���
2

2

!

for all $! V M ,

, P

1

M

MX

m=1

���÷$(X (m)
n+1) # öV M

n+1 (X (m)
n+1)

���
2

,

r
log(M)

M
+
���÷$(X n+1) # öV M

n+1 (X n+1)
���

2

2

!
,

34

where ÷$ = argmin
! #VM

���$(X n+1) # öV M
n+1 (X n+1)

���
2

2
. Then apply the Central limit theorem to

get (4.43).
Plugging (4.43) into (4.42) leads to

Rn+1

⇣
÷V trunc

n+1

⌘
= OP

 r
log(M)

M
+ inf

! #VM

���$(X n+1) # öV M
n+1 (X n+1)

���
2

2

!
.

Apply the triangular inequality to Þnally obtain:

Rn+1

⇣
÷V trunc

n+1

⌘
= OP

 r
log(M)

M
+ inf

! #VM

*$(X n+1) # Vn+1 (X n+1)*2
2

+
���Vn+1 (X n+1) # öV M

n+1 (X n+1)
���

2

2

!
.

It remains to notice that
���Vn+1 (X n+1) # öV M

n+1 (X n+1)
���

2

2
, ((N # n # 1)* f *& + *g*&)

���Vn+1 (X n+1) # öV M
n+1 (X n+1)

���
M, 1

,

to obtain inequality (4.41).

Step 3: let us show

��øV M
n # øV opt

n

��
M, 1 = OP

%M , M (2

M

r
log(M)

M
+ inf

A#A M

��A(X n) # aopt
n (X n)

��
M, 1

+
���÷V trunc

n+1 (X n) # Vn(X n)
���

M, 1

!
.

(4.44)

Note that once again it holds

��øV M
n # øV opt

n

��
M, 1 , 2"esti

n + "approx
n ,

which can be shown by similar arguments as those used to prove of inequality (4.25). It
remains to bound the estimation and approximation errors by using estimations (4.36) and
(4.37) to get (4.44).

Step 4: We show

��øV opt
n (X n) # Vn(X n)

��
M, 1 , * r *&

���öV M
n+1 (X n+1) # Vn+1 (X n+1)

���
M, 1

(4.45)

+ *r *&

���÷V trunc
n+1 (X n+1) # öV M

n+1 (X n+1)
���

M, 1
,

where X n+1 - µ. For this, denote by (øV
0

n)0' n' N the following auxiliary process:

(
øV

0
N (x) = g(x)

øV
0

n(x) = inf a# A

n
f (x, a) + EM

⇥öV M
n+1

�
F (x, a, " n+1)

�⇤o
, n = 0 , . . . , N # 1,

35

and notice that we have under assumption(Hd) :

��øV opt
n (X n) # Vn(X n)

��
M, 1 ,

���øV opt
n (X n) # øV

0
n(X n)

���
M, 1

+
���øV

0
n(X n) # Vn(X n)

���
M, 1

, * r *&

���öV M
n+1 (X n+1) # Vn+1 (X n+1)

���
M, 1

+ *r *&

���÷V trunc
n+1 (X n+1) # öV M

n+1 (X n+1)
���

M, 1
,

as stated in (4.45).

Step 5 Conclusion: By plugging (4.39), (4.44) and (4.45) into (4.38), we derive the following
bound for the l.h.s. of (4.38):

���öV M
n (X n) # Vn(X n)

���
M, 1

= OP

, M (M

L 1/d
M

+ %M , M (2
M

r
log(M)

M

+ inf
! #VM

*$(X n+1) # Vn+1 (X n+1)*M, 1 + inf
A#A M

��A(X n) # aopt
n (X n)

��
M, 1

+
���öV M

n+1 (X n) # Vn+1 (X n+1)
���

M, 1

!
, as M) + + .

By induction, we get for n = 0 , . . . , N # 1:

���öV M
n (X n) # Vn(X n)

���
M, 1

= OP

, M (M

L 1/d
M

+ %M , M (2
M

r
log(M)

M

+ sup
n' k' N

inf
A#A M

���A(X k) # aopt
k (X k)

���
M, 1

+ sup
n+1 ' k' N

inf
! #VM

*$(X k) # Vk(X k)*M, 1

!
,

which is the result stated in Theorem 4.3. 2

A Appendix

A.1 Localization

In this section, we show how to relax the boundedness condition on the state space by a
localization argument.

Let R > 0. Consider the localized state spaceøB X
d (0, R) := X / {* x*d , R} , where * .*d

is the Euclidean norm ofRd. Let
� øX n

�
0' n' N be the Markov chain deÞned by its transition

probabilities as

P
⇣

øX n+1 ! O
��� øX n = x, a

⌘
=
Z

O
r (x, a; y)d. R 0 µ(y), for n = 0 , . . . , N # 1,

for all Borelian O in øB X
d (0, R), where . R is the Euclidean projection of Rd on øB X

d (0, R),
and . R 0 µ is the pushforward measure ofµ. Notice that the transition probability of øX

36

admits the same densityr , for which (Hd) holds, w.r.t. . R 0 µ.

DeÞne (øV R
n)n as the value function associated to the following stochastic control problem

for
� øX n

�
0' n' N :

8
><

>:

øV R
N (x) = g(x),

øV R
n (x) = inf

! #C
E

"
N " 1X

k= n

f
� øX k, ! k

�
+ g

� øX N
�
#

, for n = 0 , . . . , N # 1,
(A.1)

for x ! øB X
d (0, R). By the dynamic programming principle, (øV R

n)n is solution of the following
Bellman backward equation:

8
><

>:

øV R
N (x) = g(x)

øV R
n (x) = inf

a# A

⇢
f (x, a) + Ea

n

h
øV R

n+1

�
. R
�
F (x, a, " n+1)

��i�
, %x ! B X

d (0, R),

where, again,. R is the Euclidean projection on B X
d (0, R).

We shall assume two conditions on the measureµ.
(Hloc) µ is such that:

E
⇥
|. R(X) # X |

⇤
####)
R(&

0 and P(|X | > R) ####)
R(&

0, where X - µ.

Using the dominated convergence theorem, it is straightforward to see that(Hloc) holds
if µ admits a moment of order 1.

Proposition A.1 Let X n - µ. It holds:

E
h���øV R

n

�
. R(X n)

�
Vn

�
X n
����
i

, * V *&

⇣
[r]L E [|. R(X n) # X n|] + 2P(|X n | > R)

⌘1 # * r *N " n
&

1 # * r *&

+ [g]L * r *N " n
& E [|. R(X n) # X n|] ,

where we denote *V *& = sup
0' k' N

Vk& , and use the convention 1" xp

1" x = p for x = 0 and

p > 1. Consequently, for all n = 0 , ..., N , we get under (Hloc) :

E
h���øV R

n

�
. R(X n)

�
Vn

�
X n
����
i

####)
R(&

0, where X n - µ.

Comment: Proposition A.1 states that if X is not bounded, the control problem (A.1)
associated to a bounded controlled processøX can be as close as desired, inL1(µ) sense,
to the original control problem by taking R large enough. Moreover, as stated before, the
transition probability of øX admits the same densityr asX w.r.t. the pushforward measure
. R 0 µ.

Proof of Proposition A.1. Take X n - µ and write:

E
h��øV R

n (. R(X n)) # Vn(X n)
��
i

, E
⇥��øV R

n (X n) # Vn(X n)
��1|X n|' R

⇤

+ E
⇥��øV R

n (. R(X n)) # Vn(X n)
��1|X n|* R

⇤
. (A.2)

37

Let us Þrst bound the Þrst term in the r.h.s. of (A.2), by showing that, for n = 0 , . . . , N # 1:

E
⇥��øV R

n (X n) # Vn(X n)
��1|X n|' R

⇤
, * r *& E

h��øV R
n+1 (. R(X n+1)) # Vn+1 (X n+1)

��
i

+ [r]L *Vn+1 *& E [|. R(X n+1) # X n+1 |] , with X n+1 - µ.
(A.3)

Take x ! øBd(0, R) and notice that

��øV R
n (x) # Vn(x)

�� , inf
a# A

⇢Z

A

��øV R
n+1 (. R(y)) # Vn+1 (y)

�� r (x, a; . R(y)) dµ(y)

+
Z

|Vn+1 (y)| |r (x, a; . R(y)) # r (x, a; y)| dµ(y)
�

, * r *& E
⇥��øV R

n+1 (. (X n+1)) # Vn+1 (X n+1)
��⇤

+ [r]L *Vn+1 *& E [|. R(X n+1) # X n+1 |] , where X n+1 - µ.

It remains to inject this bound in the expectation to obtain (A.3).
To bound the second term in the r.h.s. of (A.2), notice that

��øV R
n (. R(X n)) # Vn(X n)

�� , 2*Vn*&

holds a.s., which implies:

E
⇥��øV R

n (. R(X n)) # Vn(X n)
��1|X n|* R

⇤
, 2*Vn*& P(|X n | > R) . (A.4)

Plugging (A.3) and (A.4) into (A.2) yields:

E
h��øV R

n (. R(X n)) # Vn(X n)
��
i

, * r *& E
h��øV R

n+1 (. R(X n+1)) # Vn+1 (X n+1)
��
i

+ [r]L *Vn+1 *& E [|. R(X n+1) # X n+1 |] + 2 *Vn*& P(|X n | > R) ,

with X n and X n+1 i.i.d. following the law µ. The result stated in proposition A.1 then
follows by induction. 2

A.2 Forward evaluation of the optimal controls in A M

We evaluate in this section the real performance of the best controls inA M .
Let (aA M

n)N " 1
n=0 be the sequence of optimal controls in the class of neural networksA M ,

and denote by (J A M
n)0' n' N the cost functional sequence associated to (aA M

n)N " 1
n=0 and char-

acterized as solution of the Bellman equation:
8
<

:
J A M

N (x) = g(x)

J A M
n (x) = inf

A#A M

n
f (x, A (x)) + EA

n,X n
[J A M

n+1 (X n+1)]
o

,

where EA
n,X n

[á] stands for the expectation conditioned by X n and when the control A is
applied at time n.

In this section, we are interested in comparingJ A M
n to Vn. Note that Vn(x) , J A M

n (x)
holds for all x ! X , sinceA M is included in the set of the Borelian functions ofX . We can
actually show the following:

38

Proposition A.2 Assume that there exists a sequence of optimal feedback controls (aopt
n)0' n' N " 1

for the control problem with value function Vn , n = 0 , . . . , N . Then it holds, as M) + :

E
⇥
J A M

n (X n) # Vn(X n)
⇤

= O

sup

n' k' N " 1
inf

A#A M

E
h
|A(X k) # aopt

k (X k)|
i!

. (A.5)

Remark A.1 Notice that there is no estimation error term in (A.5), since the optimal
strategies in A M are deÞned as those minimizing the real cost functionals inA M , and not
the empirical ones. 2

Proof of Proposition A.2. Let n ! { 0, ..., N # 1} , and X n - µ. Take A ! A M , and
denote J A

n (X n) = f (x, A (x)) + EA
n,X n

[J A M
n+1 (X n+1)]. Clearly, we have J A M

n = min
A#A M

J A
n .

Moreover:

E
h
J A

n (X n) # Vn(X n)
i

, E
h
|f (X n , A(X n)) # f (X n , aopt

n (X n)) |
i

+ E
h
|J A M

n+1 (F (X n, A(X n), "n+1)) # Vn+1 (F (X n, aopt
n (X n), "n+1)) |

i

, [f]L E
h
|aopt

n (X n) # A(X n)|
i

+ E
h
|Vn+1 (F (X n, A(X n), "n+1)) # Vn+1 (F (X n, aopt

n (X n), "n+1)) |
i

+ E
h
|J A M

n+1 (F (X n, A(X n), "n+1)) # Vn+1 (F (X n, A(X n), "n+1)) |
i
.

(A.6)

Applying assumption (Hd) to bound the last term in the r.h.s. of (A.6) yields

E
h
J A

n (X n) # Vn(X n)
i

,
�
[f]L + *Vn+1 *& [r]L

�
E
h
|aopt

n (X n) # A(X n)|
i

+ *r *& E
h
|J A M

n+1 (X n+1) # Vn+1 (X n+1)|
i
,

which holds for all A ! A M , so that:

E
h
J A M

n (X n) # Vn(X n)
i

,
�
[f]L + *Vn+1 *& [r]L

�
inf

A#A M

E
h
|aopt

n (X n) # A(X n)|
i

+ *r *& E
h
|J A M

n+1 (X n+1) # Vn+1 (X n+1)|
i
.

(A.5) then follows directly by induction. 2

A.3 Proof of Lemma 4.1

The proof is divided into four steps.
Step 1: Symmetrization by a ghost sample. We take " > 0 and show that for

M > 2

�
(N " n)+f +1+ +g+1

�2
%2 , it holds:

P

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i
E

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i����� > "

#

, 2P

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1 # f (X
0(m)
n , A(X

0(m)
n)) # öY $(m),A

n+1

i����� >
"
2

#
,

(A.7)

39

where:

¥ (X
0(m)
k)1' m' M,n ' k' N is a copy of (X (m)

k)1' m' M,n ' k' N generated from an indepen-

dent copy of the exogenous noises ("$(m)
k)1' m' M,n ' k' N , and independent copy of ini-

tial positions (X
0(m)
n)1' m' M , following the same control öaM

k at time k= n+1 , . . . , N #
1, and control A at time n,

¥ We remind that Y (m),A
n+1 has already been deÞned in (4.5), and we similarly deÞne

Y $(m),A
n+1 :=

N " 1X

k= n+1

f (X $(m),A
k , öaM

k (X $(m),A
k)) + g(X $(m),A

N).

Let A! ! A M be such that:
�����

1
M

MX

m=1

h
f (X (m)

n , A! (X (m)
n)) + öY (m),A ⇤

n+1

i
E

h
J

A⇤,(öaM
k)N�1

k=n+1
n (X n)

i����� > "

if such a function exists, and an arbitrary function in A M if such a function does not ex-

ist. Note that 1
M

PM
m=1

h
f (X (m)

n , A! (X (m)
n)) + öY (m),A ⇤

n+1

i
E

h
J

A⇤,(öaM
k)N�1

k=n+1
n (X n)

i
is a r.v.,

which implies that A! also depends on/ ! ". Denote by PM the probability condi-
tioned by the training set of exogenous noises (" (m)

k)1' m' M,n ' k' N and initial positions

(X (m)
k)1' m' M,n ' k' N , and recall that EM stands for the expectation conditioned by the

latter. Application of ChebyshevÕs inequality yields

PM

" �����EM

h
J

A⇤,(öaM
k)N�1

k=n+1
n (X $

n)
i

#
1

M

MX

m=1

h
f (X $(m)

n , A! (X $(m)
n)) + öY $(m),A ⇤

n+1

i����� >
"
2

#

,
VarM

h
J

A⇤,(öaM
k)N�1

k=n+1
n (X $

n)
i

M ("/ 2)2

,

�
(N # n)* f *& + *g*&

�2

M" 2 ,

where we have used 0,
���J

A⇤,(öaM
k)N�1

k=n+1
n (X $

n)
��� , (N # n)* f *& + *g*& which implies

VarM


J

A⇤,(öaM
k)N�1

k=n+1
n (X $

n)
�

= Var M


J

A⇤,(öaM
k)N�1

k=n+1
n (X $

n) #
(N # n)* f *& + *g*&

2

�

, E

"✓
J

A⇤,(öaM
k)N�1

k=n+1
n (X $

n) #
(N # n)* f *& + *g*&

2

◆2
#

,

�
(N # n)* f *& + *g*&

�2

4
.

Thus, for M > 2

�
(N " n)+f +1+ +g+1

�2
%2 , we have

PM

" �����EM

h
J

A⇤,(öaM
k)N�1

k=n+1
n (X n)

i
#

1
M

MX

m=1

h
f (X $(m)

n , A! (X $(m)
n)) + öY $(m),A ⇤

n+1

i����� ,
"
2

#
'

1
2

.

(A.8)

40

Hence:

P

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1 # f (X $(m)
n , A(X $m

n)) # öY $(m),A
n+1

i����� >
"
2

#

' P

"�����
1

M

MX

m=1

h
f (X (m)

n , A! (X (m)
n)) + öY (m),A ⇤

n+1 # f (X $(m)
n , A! (X $(m)

n)) # öY $(m),A ⇤

n+1

i����� >
"
2

#

' P

"�����
1

M

MX

m=1

h
f (X (m)

n , A! (X (m)
n)) + öY (m),A ⇤

n+1

i
EM

h
J

A⇤,(öaM
k)N�1

k=n+1
n (X n)

i����� > ",

�����
1

M

MX

m=1

h
f (X $(m)

n , A! (X $(m)
n)) + öY $(m),A ⇤

n+1

i
EM

h
J

A⇤,(öaM
k)N�1

k=n+1
n (X n)

i����� ,
"
2

#
.

Observe that 1
M

PM
m=1

h
f (X (m)

n , A! (X (m)
n))+ öY (m),A ⇤

n+1

i
EM

h
J

A⇤,(öaM
k)N�1

k=n+1
n (X n)

i
is measur-

able w.r.t. the #-algebra generated by the training set, so that conditioning by the training
set and injecting (A.8) yields

P

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1 # f (X $(m)
n , A(X $(m)

n)) # öY $(m),A
n+1

i����� >
"
2

#

'
1
2

P

"�����
1

M

MX

m=1

h
f (X (m)

n , A! (X (m)
n)) + öY (m),A ⇤

n+1

i
EM

h
J

A⇤,(öaM
k)N�1

k=n+1
n (X n)

i����� > "

#

=
1
2

P

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i
E

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i����� > "

#
,

for M > 2

�
(N " n)+f +1+ +g+1

�2
%2 , where we use the deÞnition ofA! to go from the second-to-

last to the last line. The proof of (A.7) is then completed.

Step 2: We show that

E

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i
E

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i�����

#

, 4E

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1 # f (X $(m)
n , A(X $(m)

n)) # öY $(m),A
n+1

i�����

#

+ O
✓

1
.

M

◆
. (A.9)

41

Indeed, let M $ =
.

2(N " n)+f +1+ +g+1)
M

, and notice

E

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i
E

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i�����

#

=
Z &

0
P

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i
E

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i����� > "

#
d"

=
Z M 0

0
P

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i
E

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i����� > "

#
d"

+
Z &

M 0
P

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i
E

h
J

A, (öaM
k)N�1

k=n+1
n (X n)

i����� > "

#
d"

,
.

2
(N # n)* f *& + *g*&.

M

+ 4
Z &

0
P

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

f (X $(m)
n , A(X $(m)

n)) # öY $(m),A
n+1

i����� > "

#
d". (A.10)

The second term in the r.h.s. of (A.10) comes from (A.7). It remains to write the latter as
an expectation to obtain (A.9).

Step 3: Introduction of additional randomness by random signs.

Let (rm)1' m' M be i.i.d. Rademacher r.v.e. We show that:

E

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1 # f (X $(m)
n , A(X $(m)

n)) # öY $(m),A
n+1

i�����

#

, 4E

"
sup

A#A M

�����
1

M

MX

m=1

rm

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i�����

#
. (A.11)

Since for eachm = 1 , ..., M the set of exogenous noises ("$(m)
k)n' k' N and (" (m)

k)n' k' N are
i.i.d., their joint distribution remain the same if one randomly interchanges the correspon-

e
The probability mass function of a Rademacher r.v. is by definition

1
2 "�1 +

1
2 "1.

42

ding components. Thus, it holds for " ' 0:

P

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1 # f (X $m
n , A(X $m

n)) # öY $(m),A
n+1

i����� > "

#

= P

"
sup

A#A M

�����
1

M

MX

m=1

rm

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1 # f (X $m
n , A(X $m

n)) # öY $(m),A
n+1

i����� > "

#

, P

"
sup

A#A M

�����
1

M

MX

m=1

rm

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i����� >
"
2

#

+ P

"
sup

A#A M

�����
1

M

MX

m=1

rm

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i����� >
"
2

#

, 2P

"
sup

A#A M

�����
1

M

MX

m=1

rm

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i����� >
"
2

#
.

It remains to integrate on R+ w.r.t. " to get (A.11).

Step 4: We show that

E

"
sup

A#A M

�����
1

M

MX

m=1

rm

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i�����

#

,
(N # n)* f *& + *g*&.

M

+

[f]L + [f]L

N " 1X

k= n+1

�
1 + , M (M

�k" n [F]k" n
L + , N " n

M (N " n
M [F]N " n

L [g]L

!

= O
✓

(N " n
M , N " n

M.
M

◆
, as M) + . (A.12)

Adding and removing the cost obtained by control 0 at time n yields:

E

"
sup

A#A M

�����
1

M

MX

m=1

rm

⇣
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

⌘�����

#

, E

"����
1

M

MX

m=1

rm

⇣
f (X (m)

n , 0) + öY (m),0
n+1

⌘����

#

+ E

"
sup

A#A M

�����
1

M

MX

m=1

rm

⇣
f (X (m)

n , A(X (m)
n)) # f (X (m)

n , 0) + öY (m),A
n+1 # öY (m),0

n+1

⌘�����

#
.

(A.13)

We now bound the Þrst term of the r.h.s. of (A.13). By Cauchy-Schwartz inequality, and
recalling that (rm)1' m' M are i.i.d. with zero mean such that r 2

m = 1, we get

E

"����
1

M

MX

m=1

rm

⇣
f (X (m)

n , 0) + öY (m),0
n+1

⌘����

#
,

1
M

vuutE

"����
MX

m=1

rm

⇣
f (X (m)

n , 0) + öY (m),0
n+1

⌘����
2
#

,
1

.
M

�
(N # n)* f *& + *g*&

�
(A.14)

43

Turn now to the second term of (A.13). By the Lipschitz continuity of f , it stands:

E

"
sup

A#A M

�����

MX

m=1

rm

⇣
f (X (m)

n , A(X (m)
n)) # f (X (m)

n , 0) + öY (m),A
n+1 # öY (m),0

n+1

⌘�����

#

, [f]L E


sup
A#A M

���
MX

m=1

rm A(X (m)
n)

���
�

+ E

"
sup

A#A M

�����

MX

m=1

rm

⇣
öY (m),A

n+1 # öY (m),0
n+1

⌘�����

#

,

[f]L + [f]L

N " 1X

k= n+1

�
1 + , M (M

�k" nE

2

4 sup
1' m' M

kY

j = n+1

C
�
"m

j

�
3

5

+ [g]L
⇣

1 + , N " n
M (N " n

M

⌘
E

2

4 sup
1' m' M

NY

j = n+1

C
�
"m

j

�
3

5
!

E

"
sup

A#A M

���
MX

m=1

rm A(X (m)
n)

���

#

(A.15)

where we condition by the exogenous noise, use assumption(HF-PI) and the , M (M -
Lipschitz continuity of the estimated optimal controls at time k, for k = n + 1 , . . . , N # 1.

Now, notice Þrst that

E

"
sup

1' m' M

NY

k= n+1

C ("m
k)

#
,

NY

k= n+1

E

"
sup

1' m' M
C ("m

k)

#
, %N " n

M , (A.16)

and moreover:

E


sup
A#A M

����
MX

m=1

rm A(X (m)
n)

����

�
, (M E


sup

|v|2 ' 1/R

����
MX

m=1

rm (vT X (m)
n)+

����

�

, (M E


sup
|v|2 ' 1/R

����
MX

m=1

rm vT X (m)
n

����

�
, (A.17)

whereR > 0 is a bound for the state space (see e.g. the discussion on the Frank-Wolfe step
p.10 of [1] for a proof of this inequality), which implies by Cauchy-Schwarz inequality:

E


sup
A#A M

����
MX

m=1

rm A(X (m)
n)

����

�
,

(M

R

vuutE
����

MX

m=1

rm X (m)
n

����
2�

, (M
.

M

since the (rm)m are i.i.d. Rademacher r.v. Plug Þrst (A.16) and (A.17) into (A.15) to
obtain

E

"
sup

A#A M

�����

MX

m=1

rm

⇣
f (X (m)

n , A(X (m)
n)) # f (X (m)

n , 0) + öY (m),A
n+1 # öY (m),0

n+1

⌘�����

#

,

[f]L + [f]L

N " 1X

k= n+1

�
1 + , M (M

�k" n%k" n
M + [g]L

⇣
1 + , N " n

M (N " n
M

⌘
%N " n

M

!
(M

.
M.

(A.18)

44

Plug then (A.14) and (A.18) into (A.13) to get (A.12).

Step 5: Conclusion

Plug (A.12) into (A.11) and combine it with (A.9) to obtain the bound on the estimation
error, as stated in (4.10) of Lemma 4.1. 2

A.4 Proof of Lemma 4.2

Let (öaM
k)N " 1

k= n+1 be the sequence of estimated controls at timek = n + 1 , ..., N # 1. Take

A ! A M and remind that we denote by J
A, (öa)N�1

k=n+1
n the cost functional associated to the

control A at time n, and öaM
k at time k = n + 1 , . . . , N # 1. The latter is characterized as

solution of the Bellman equation
8
><

>:

J
A, (öa)N�1

k=n+1

N (x) = g(x)

J
A, (öa)N�1

k=n+1
n (x) = f (x, A (x)) + EA

n,x


J

A, (öa)N�1
k=n+1

n+1 (X n+1)
�

,

whereEA
n,x [á] stands for the expectation conditioned by{ X n = x} when feedback controlA

is followed at time n.
Take n ! { 1, ..., N } . It holds:

"approx
PI ,n := inf

A#A M

EM


J

A, (öa)N�1
k=n+1

n (X n)
�

inf
A# AX

EM


J

A, (öa)N�1
k=n+1

n (X n)
�

= inf
A#A M

EM


J

A, (öa)N�1
k=n+1

n (X n)
�

E [Vn(X n)] + E [Vn(X n)] # inf
A# AX

EM


J

A, (öa)N�1
k=n+1

n (X n)
�

, inf
A#A M

EM


J

A, (öa)N�1
k=n+1

n (X n)
�

E [Vn(X n)] , (A.19)

where the last inequality stands because the value function is smaller than the cost func-
tional associated to any other strategy. We then apply the dynamic programming principle
to obtain:

min
A#A M

EM


J

A, (öa)N�1
k=n+1

n (X n)
�

E [Vn(X n)]

, inf
A#A M

EM


f
�
X n, A(X n)

�
+ EA

n


J

(öa)N�1
k=n+1

n+1 (X n+1)
��

E
h
f
�
X n, aopt

n (X n)
�

+ Eaopt

n [Vn+1 (X n+1)]
i

. (A.20)

To bound the r.h.s. of (A.20), Þrst observe that for A ! A M :

EM


f
�
X n, A(X n)

�
+ EA

n


J

(öa)N�1
k=n+1

n+1 (X n+1)
��

E
h
f
�
X n, aopt

n (X n)
�

+ Eaopt

n [Vn+1 (X n+1)]
i

, E
⇥
|f
�
X n, A(X n)

�
f

�
X n, aopt

n (X n)
�
|
⇤

+ EM

h
EA

n J
(öa)N�1

k=n+1
n+1 (X n+1) # Eaopt

n Vn+1 (X n+1)
i

,
�
[f]L + *Vn+1 *& [r]L

�
E
⇥
|A(X n) # aopt

n (X n)|
⇤

+ *r *& EM

h
J

(öa)N�1
k=n+1

n+1 (X n+1) # Vn+1 (X n+1)
i
,

(A.21)

45

where we used twice assumption(Hd) at the second-last line of (A.21). Inject inequality

EM

h
J

(öa)N�1
k=n+1

n+1 (X n+1)
i

, inf
A#A M

EM

h
J

A, (öa)N�1
k=n+2

n+1 (X n+1)
i

+ 2"esti
n+1

into (A.21) to obtain:

EM


f
�
X n, A(X n)

�
+ EA

n


J

(öa)N�1
k=n+1

n+1 (X n+1)
��

E
h
f
�
X n, aopt

n (X n)
�

+ Eaopt

n [Vn+1 (X n+1)]
i

,
�
[f]L + *Vn+1 *& [r]L

�
E
⇥
|A(X n) # aopt

n (X n)|
⇤

+ *r *& inf
A#A M

EM


J

A, (öa)N�1
k=n+2

n+1 (X n+1) # Vn+1 (X n+1)
�

+ 2*r *& "esti
n+1 . (A.22)

Plugging (A.22) into (A.20) yields

inf
A#A M

EM


J

A, (öa)N�1
k=n+1

n (X n)
�

E [Vn(X n)]

, * r *& inf
A#A M

EM


J

A, (öa)N�1
k=n+2

n+1 (X n+1) # Vn+1 (X n+1)
�

+ 2*r *& "esti
n+1

+
�
[f]L + *Vn+1 *& [r]L

�
inf

A#A M

E
⇥
|A(X n) # aopt

n (X n)|
⇤

,

which implies by induction, as M) + + :

E


inf
A#A M

EM


J

A, (öa)N�1
k=n+1

n (X n)
�

E [Vn(X n)]
�

= O
✓

sup
n+1 ' k' N " 1

E
⇥
"esti

k

⇤
+ sup

n' k' N " 1
inf

A#A M

E
⇥
|A(X n) # aopt

n (X n)|
⇤◆

.

We now use Lemma 4.1 to bound the expectations of the"esti
PI ,k for k = n + 1 , . . . , N # 1,

and plug the result into (A.19) to complete the proof of Lemma 4.2. 2

A.5 Function approximation by neural networks

We assumeaopt
n (X n) ! L2(µ), and show the relation (4.8) in Proposition 4.1.

The universal approximator theorem applies for

A & :=
&[

M =1

A M ,

and states that for all " > 0, there exists a neural networka! in A & such that:

sup
n' k' N " 1

*aopt
k # a! *& <

"
Vd(X)

,

where Vd(X) stands for the volume of compact setX seen as a compact of the euclidean
spaceRd. By integrating, we then get:

sup
n' k' N " 1

Z

X

��aopt
k (x) # a! (x)

��dµ(x) < ",

46

Also, notice that
�
A M

�
M * 1 is increasing, which implies that A & = lim M (+ & A M , and

gives the existence ofM > 0, that depends on" , such that a! ! A M .
Therefore, we have shown that forn = 0 , ..., N # 1

sup
n' k' N " 1

inf
A#A M

E
⇥
|A(X k) # aopt

k (X k)|
⇤

####)
M (&

0, with X k - µ,

which is the required result stated in (4.8). 2

We now show (4.9) of proposition 4.1:
As stated in section 4.7 of [1]: proposition 6 in [1] shows that we can approximate ac-
Lipschitz function by a (1-norm less than(M and uniform error less thanc

� (M
c

�" 2d/ (d+1) log (M
c ,

and proposition 1 in [1] shows that a function with (1 less than(M may be approximated
with K M neurons with uniform error (M K " (d+3) / (2d)

M .
Thus, given K M and (M , there exists a neural networka! in VM such that

*a! # aopt *& , c
⇣ (M

c

⌘" 2d/ (d+1)
log
⇣ (M

c

⌘
+ (M K " (d+3) / (2d)

M . (A.23)

2

A.6 Proof of Lemma 4.3

We prove Lemma 4.3 in four steps. Since the proof is very similar to the one of Lemma
4.1, we only detail the arguments that are modiÞed.
Step 1: Symmetrization by a ghost sample. We take " > 0 and show that for M >

2

�
(N " n)+f +1+ +g+1

�2
%2 , it holds

P

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i
E

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i����� > "

#

, 2P

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1 # f (X $(m)
n , A(X $(m)

n)) # öY $(m),A
n+1

i����� >
"
2

#
,

(A.24)

where:

¥
�
X $(m)

n
�M

m=1 is a i.i.d. copy of
�
X (m)

n
�M

m=1 ,

¥
�
"$m

n+1

�M
m=1 is a i.i.d. copy of

�
"m

n+1

�M
m=1 ,

¥ we deÞne
öY (m),A

n+1 := öV M
n+1

⇣
F
⇣

X (m)
n , A

�
X (m)

n

�
, "m

n+1

⌘⌘
,

and
öY $(m),A

n+1 := öV M
n+1

⇣
F
⇣

X $(m)
n , A

�
X $(m)

n

�
, " $m

n+1

⌘⌘
.

Proof: Since öV M
n the estimated value function at time n, for n=0 , ..., N # 1, is bounded by

construction (we truncated the estimation at the last step of the pseudo-code of the Hybrid
algorithm), the proof is the same as the one in step 1 of Lemma 4.1. 2

47

Step 2: The following result holds

E

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i
E

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i�����

#

, 4E

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1 # f (X $(m)
n , A(X $(m)

n)) # öY $(m),A
n+1

i�����

#

+ O
✓

1
.

M

◆
. (A.25)

Proof: same as step 2 in the proof of Lemma 4.1. 2

Step 3: Introduction of additional randomness by random signs.

The following result holds:

E

"
sup

A#A M

�����
1

M

MX

m=1

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1 # f (X $(m)
n , A(X $(m)

n)) # öY $(m),A
n+1

i�����

#

, 4E

"
sup

A#A M

�����
1

M

MX

m=1

rm

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i�����

#
. (A.26)

Proof: same as step 3 in the proof of Lemma 4.1. 2

Step 4: We show that

E

"
sup

A#A M

�����
1

M

MX

m=1

rm

h
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

i�����

#
,

(N # n)* f *& + *g*&.
M

+ ([f]L + %M (M , M)
(M.

M

= O
✓

%M (2
M , M.
M

◆
, as M) + + .

(A.27)

Adding and removing the cost obtained by control 0 at time n yields:

E

"
sup

A#A M

�����
1

M

MX

m=1

rm

⇣
f (X (m)

n , A(X (m)
n)) + öY (m),A

n+1

⌘�����

#
, E

"����
1

M

MX

m=1

rm

⇣
f (X (m)

n , 0) + öY (m),0
n+1

⌘����

#

+ E

"
sup

A#A M

�����
1

M

MX

m=1

rm

⇣
f (X (m)

n , A(X (m)
n)) # f (X (m)

n , 0) + öY (m),A
n+1 # öY (m),0

n+1

⌘�����

#
.

(A.28)

The Þrst term in the r.h.s. in (A.28) is bounded as in the proof of Lemma 4.1 by

(N # n)* f *& + *g*&.
M

.

48

We use the Lipschitz-continuity of f as follows, to bound its second term:

E

"
sup

A#A M

�����

MX

m=1

rm

⇣
f (X (m)

n , A(X (m)
n)) # f (X (m)

n , 0) + öY (m),A
n+1 # öY (m),0

n+1

⌘�����

#

, [f]L E


sup
A#A M

���
MX

m=1

rm A(X (m)
n)

���
�

+ E

"
sup

A#A M

�����

MX

m=1

rm

⇣
öY (m),A

n+1 # öY (m),0
n+1

⌘�����

#
,

, ([f]L + %M , M (M) E

"
sup

A#A M

���
MX

m=1

rm A(X (m)
n)

���

#

where we condition by the exogenous noise, use assumption(HF) , and the , M (M -Lipschitz
continuity of the estimated value fonction at time n + 1.

By using the same arguments as those presented in the proof of Lemma 4.1, we can Þrst

bound E


supA#A M

���
PM

m=1 rm A(X (m)
n)

���
�

as follows:

E


sup
A#A M

����
MX

m=1

rm A(X (m)
n)

����

�
, (M

.
M, (A.29)

and then conclude that (A.27) holds.
Step 5: Conclusion

Combining(A.25),(A.26) and (A.27) results in the bound on the estimation error as stated
in (4.23). 2

A.7 Proof of Lemma 4.4

We divide the proof of Lemma 4.4 into two steps.
First write

"approx
HN ,n , inf

A#A M

EM

h
f (X n , A(X n)) + öV M

n+1

�
X A

n+1

�i
E [Vn(X n)]

+ E [Vn(X n)] # inf
A# AX

EM

h
f (X n , A(X n)) + öV M

n+1

�
X A

n+1

�i
. (A.30)

Step 1: We show

inf
A#A M

EM

h
f (X n , A(X n)) + öV M

n+1

�
X A

n+1

�i
E [Vn(X n)]

, ([f]L + *Vn+1 *& [r]L) inf
A# AX

EM
⇥��A(X n) # aopt

n (X n)
��⇤

+ *r *& EM

h���Vn+1 (X n+1) # öV M
n+1 (X n+1)

���
i

.

(A.31)

Take A ! A M , and apply the dynamic programming principle to write

EM

h
f (X n , A(X n)) + öV M

n+1

�
X A

n+1

�i
E [Vn(X n)]

, [f]L EM
⇥��A(X n) # aopt

n (X n)
��⇤ + EM

h
EM

h
öV M

n+1 (X A
n+1)

i
EM

h
Vn+1

⇣
X aopt

n
n+1

⌘ii

, ([f]L + *Vn+1 *& [r]L) EM
⇥��A(X n) # aopt

n (X n)
��⇤

+ EM

h���öV M
n+1 (X A

n+1) # Vn+1 (X A
n+1)

���
i

,

49

where we used(Hd) at the second-to-last line. By using one more time assumption(Hd) ,
we then get:

EM

h
f (X n , A(X n)) + öV M

n+1

�
X A

n+1

�i
E [Vn(X n)]

, ([f]L + *Vn+1 *& [r]L) EM
⇥��A(X n) # aopt

n (X n)
��⇤

+ *r *& EM

h���öV M
n+1 (X n+1) # Vn+1 (X n+1)

���
i

, with X n+1 - µ,

which is the result stated in (A.31).

Step 2: We show

E [Vn(X n)] # inf
A# AX

EM

h
f (X n , A(X n)) + öV M

n+1

�
X A

n+1

�i

, * r *& EM

h���Vn+1 (X n+1) # öV M
n+1 (X n+1)

���
i

.
(A.32)

Write

E [Vn(X n)] # inf
A# AX

EM

h
f (X n , A(X n)) + öV M

n+1

�
X A

n+1

�i

, inf
A# AX

EM
⇥
f (X n , A(X n)) + Vn+1

�
X A

n+1

�⇤
inf

A# AX
EM

h
f (X n , A(X n)) + öV M

n+1

�
X A

n+1

�i

, inf
A# AX

EM

h
Vn+1

�
X A

n+1

�
öV M

n+1

�
X A

n+1

�i

, * r *& EM

h���Vn+1 (X n+1) # öV M
n+1 (X n+1)

���
i

,

which completes the proof of (A.32).

Step 3 Conclusion:

We complete the proof of Lemma 4.4 by plugging (A.31) and (A.32) into (A.30). 2

A.8 Some useful Lemmas for the proof of Theorem 4.2

Fix M ! N! , let x1, . . . , xM ! Rd, and set xM = (x1, . . . , xM). DeÞne the distanced2(f, g)
betweenf : Rd) R and g : Rd) R by

d2(f, g) =

1

M

MX

m=1

|f (xm) # g(xm)|2
!1/ 2

.

An "-cover of V (w.r.t. the distance d2) is a set of functionsf 1, . . . , f P : Rd) R such that

min
p=1 ,...,P

d2 (f, f p) < ", for f ! V .

Let N2(", V, xM) denote the size of the smallest" -cover of V w.r.t. the distance d2, and
set N2(", V, xM) = + if there does not exist any"-cover of V of Þnite size.N2(", V, xM) is
called (L2-" -covering number ofV on xM .

50

Lemma A.1 Let (X, Y) be a random variable. Assume |Y | , L a.s. and let

m(x) = E[Y |X = x].

Assume Y # m(X) is sub-Gaussian in the sense that

max
m=1 ,...,M

c2E
h
e(Y " m(X)) 2/c 2

1|X
i

, #2 a.s.

for some c, # > 0. Let (M , L ' 1 and assume that the regression function is bounded by L
and that (M #####)

M (+ &
+ + .

Set

ömM = argmin
! #VM

1
M

MX

m=1

��$(xi) # øYm
��2

for some VM of functions $: Rd) [# (M , (M] and some random variables øY1, ..., øYM which

are bounded by L . Then there exists constants c1, c2 > 0 which depend only on # and c such

that for any -M > 0 with

-M #####)
M (+ &

0, and
M- M

(M
#####)
M (+ &

+ +

and

c1

.
M-

(2
M

'
Z p

�

c2 �/�2
M

log

N2

✓
u

4(M
,

⇢
f # g : f ! V M ,

1
M

MX

m=1

��f (xm) # g(xm)
��2 ,

-
(2
M

�
, xM

1

◆!1/2

du

(A.33)

for all - ' -M and all g ! V M 1 { m} we have as M) + + :

E
h�� ømM (X) # m(X)

��2
i

= OP

1

M

MX

m=1

��Ym # øYm
��2 + -M + inf

! #VM

E
h��$(X) # m(X)

��2
i!

.

Lemma A.2 Let VM be defined as in Section 4.2. For any " > 0, we have

N2

⇣
", VM , (X (m)

n)1' m' M

⌘
,

12e(M

�
K M + 1

�

"

!(4d+9) K M+1

.

References

[1] Francis Bach. Breaking the curse of dimensionality with convex neural networks.Journal of
Machine Learning Research, 18(19):1Ð53, 2017.

[2] Achref Bachouch, Cöome Hur«e, Nicolas Langren«e, and Huyöen Pham. Deep neural networks
algorithms for stochastic control problems on Þnite horizon, part II: numerical applications.
2018.

[3] Alessandro Balata and Jan Palczewski. Regress-later Monte-Carlo for optimal inventory control
with applications in energy. arXiv:1703.06461, 2018.

51

[4] Dimitri P. Bertsekas and John Tsitsiklis. Neuro-Dynamic Programming. Athena ScientiÞc,
1996.

[5] George Cybenko. Approximations by superpositions of sigmoidal functions.Mathematics of
Control, Signals, and Systems, 2(4):303Ð314, 1989.

[6] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for high-
dimensional parabolic partial di!erential equations and backward stochastic di!erential equa-
tions. Communications in Mathematics and Statistics 5, 5:349Ð380, 2017.

[7] Aur«elien G«eron. Deep Learning avec TensorFlow. OÕReilly Media, 2017.

[8] Paul Glasserman and Bin Yu. Simulation for American options: regression now or regression
later? Monte Carlo and Quasi-Monte Carlo Methods, pages 213Ð226, 2004.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.Deep learning. MIT Press, 2016.

[10] Siegfried Graf and Harald Luschgy.Foundations of Quantization for Probability Distributions,
volume 1730. Springer-Verlag Berlin Heidelberg, 2000.

[11] Julien Guyon and Pierre Henry-Labordere. Uncertain volatility model: a Monte-Carlo ap-
proach. SSRN, 2010.

[12] L«aszlo Gy¬orÞ, Michael Kohler, Adam Krzyzak, and Harro Walk. A Distribution-Free Theory
of Nonparametric Regression. Springer Series in Statistics, 2002.

[13] Jiequn Han and Weinan E. Deep learning approximation for stochastic control problems.
arXiv:1611.07422, 2016.

[14] Jiequn Han and Jihao Long. Convergence of the deep BSDE method for coupled FBSDEs.
arXiv:1811.01165v1, 2018.

[15] Pierre Henry-Labordere. Deep primal-dual algorithm for BSDEs: Applications of machine
learning to CVA and IM. SSRN:3071506, 2017.

[16] Kurt Hornick. Approximation capabilities of multilayer feedforward networks. Neural Net-
works,, 4:251Ð257, 1991.

[17] Idris Kharroubi, Nicolas Langren«e, and Huyöen Pham. A numerical algorithm for fully nonlinear
HJB equations: an approach by control randomization.Monte Carlo Methods and Applications,
20(2):145Ð165, 2014.

[18] Michael Kohler. Nonparametric regression with additional measurement errors in the dependent
variable. Journal of Statistical Planning and Inference, 136(10):3339Ð3361, October 2006.

[19] Michael Kohler, Adam Krzyúzak, and Nebojsa Todorovic. Pricing of high-dimensional American
options by neural networks. Mathematical Finance, 20(3):383Ð410, 2010.

[20] Andrey Nikolaevich Kolmogorov. On the representation of continuous functions of several vari-
ables by superpositions of continuous functions of a smaller number of variables.Mathematics
and Its Applications (Soviet Series), 25, 1991.

[21] Steven Kou, Xianhua Peng, and Xingbo Xu. EM algorithm and stochastic control. Available
at SSRN: https://ssrn.com/abstract=2865124, 2016.

[22] Yann LeCun, Yoshua Bengio, and Geo!rey Hinton. Deep learning.Nature, 521:436Ð444, 2015.

[23] Yuxi Li. Deep reinforcement learning: an overview. arXiv 1701.07274v3, 2017.

[24] Francis A. Longsta! and Eduardo S. Schwartz. Valuing American options by simulation: A
simple least-squares approach.The Review of Financial Studies, 14(1):113Ð147, 2001.

52

[25] Michael Ludkovski and Aditya Maheshwari. Simulation methods for stochastic storage prob-
lems: A statistical learning perspective. arXiv:1803.11309, 2018.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, and Andrei A. Rusu. Human-level control
through deep reinforcement learning.Nature, 518:529Ð533, 2015.

[27] Michael Nielsen. Neural networks and deep learning.

[28] Gilles Pagès, Huyöen Pham, and Jacques Printems. Optimal quantization methods and appli-
cations to numerical problems in Þnance.Handbook of computational and numerical methods
in finance, pages 253Ð297, 2004.

[29] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality.
Wiley & Sons, 2011.

[30] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. The MIT Press, 1998.

[31] Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. 31st Conference on Neural
Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017.

53

	Introduction
	Preliminaries on DNN and SGD
	Neural network approximations
	Stochastic optimization in DNN

	Description of the algorithms
	Control learning by performance iteration
	Control learning by hybrid iteration
	Hybrid-Now Algo
	Hybrid-LaterQ Algo

	Training sets design
	Some remarks
	Case of finite control space: classification
	Comparison of the algorithms

	Convergence analysis
	Control learning by performance iteration (NNcontPI)
	Hybrid-Now algorithm
	Hybrid-LaterQ algorithm

	Appendix
	Localization
	Forward evaluation of the optimal controls in AM
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Function approximation by neural networks
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Some useful Lemmas for the proof of Theorem 4.2

