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1 Introduction

Let us consider the following discrete-time stochastic control problem over a finite horizon

N 2 N \ {0}. The dynamics of the controlled state process X↵ = (X↵
n )n valued in X ⇢ Rd

is given by

X
↵

n+1 = F (X↵

n ,↵n, "n+1), n = 0, . . . , N � 1, X↵

0 = x0 2 Rd
, (1.1)

where ("n)n is a sequence of i.i.d. random variables valued in some Borel space (E,B(E)),

and defined on some probability space (⌦,F ,P) equipped with the filtration F = (Fn)n
generated by the noise ("n)n (F0 is the trivial �-algebra), the control ↵ = (↵n)n is an
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F-adapted process valued in A ⇢ Rq, and F is a measurable function from Rd
⇥ Rq

⇥ E

into Rd.

Given a running cost function f defined on Rd
⇥Rq, a terminal cost function g defined

on Rd, the cost functional associated to a control process ↵ is

J(↵) = E
"
N�1X

n=0

f(X↵

n ,↵n) + g(X↵

N )

#
.

The set C of admissible control is the set of control processes ↵ satisfying some integrability

conditions ensuring that the cost functional J(↵) is well-defined and finite. The control

problem, also called Markov decision process (MDP), is formulated as

V0(x0) := inf
↵2C

J(↵), (1.2)

and the goal is to find an optimal control ↵⇤
2 C, i.e., attaining the optimal value: V0(x0)

= J(↵⇤). Notice that problem (1.1)-(1.2) may also be viewed as the time discretization

of a continuous time stochastic control problem, in which case, F is typically the Euler

scheme for a controlled di↵usion process, and V0 is the discrete-time approximation of a

fully nonlinear Hamilton-Jacobi-Bellman equation.

Problem (1.2) is tackled by the dynamic programming approach, and we introduce the

standard notations for MDP: denote by {P
a(x, dx0), a 2 A, x 2 X}, the family of transition

probabilities associated to the controlled (homogenous) Markov chain (1.1), given by

P
a(x, dx0) = P

⇥
F (x, a, "1) 2 dx

0⇤

and for any measurable function ' on X :

P
a
'(x) =

Z
'(x0)P a(x, dx0) = E

⇥
'
�
F (x, a, "1)

�⇤
.

With these notations, we have for any measurable function ' on X , for any ↵ 2 C,

E['(X↵

n+1)|Fn] = P
↵n'(X↵

n ), 8 n 2 N.

The optimal value V0(x0) is then determined in backward induction starting from the

terminal condition

VN (x) = g(x), x 2 X ,

and by the dynamic programming (DP) formula, for n = N � 1, . . . , 0:
(

Qn(x, a) = f(x, a) + P
a
Vn+1(x), x 2 X , a 2 A,

Vn(x) = inf
a2A

Qn(x, a),
(1.3)

The function Qn is called optimal state-action value function, and Vn is the (optimal) value

function. Moreover, when the infimum is attained in the DP formula at any time n by

a
⇤
n(x), we get an optimal control in feedback form given by: ↵⇤ = (a⇤n(X

⇤
n))n where X

⇤ =

X
↵
⇤
is the Markov process defined by

X
⇤
n+1 = F (X⇤

n, a
⇤
n(X

⇤
n), "n+1), n = 0, . . . , N � 1, X

⇤
0 = x0.
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The DP has a probabilistic formulation: it says that for any control ↵ 2 A, the value

function process augmented with the cumulative costs defined by

�
S
↵

n := Vn(X
↵

n ) +
n�1X

k=0

f(X↵

k ,↵k), n = 1, . . . , N
 

(1.4)

is a submartingale, and a martingale for the optimal control ↵⇤. This martingale property

for the optimal control is a key observation for our algorithms described later.

Remark 1.1 We can deal with state/control constraints at any time, which is useful for

the applications:

(X↵

n ,↵n) 2 S a.s., n 2 N,

where S is some given subset of Rd
⇥ Rq. In this case, in order to ensure that the set of

admissible controls is not empty, we assume that the sets

A(x) :=
n
a 2 Rq : (F (x, a, "1), a) 2 S a.s.

o

are non empty for all x 2 X , and the DP formula reads now as

Vn(x) = inf
a2A(x)

⇥
f(x, a) + P

a
Vn+1(x)

⇤
, x 2 X .

From a computational point of view, it may be more convenient to work with unconstrained

state/control variable, hence by relaxing the state/control constraint and introducing into

the running cost a penalty function L(x, a): f(x, a)  f(x, a) + L(x, a), and g(x)  

g(x) + L(x, a). For example, if the constraint set S is in the form: S = {(x, a) 2 Rd
⇥Rq :

hk(x, a) = 0, k = 1, . . . , p, hk(x, a) � 0, k = p + 1, . . . , q}, for some functions hk, then one

can take as penalty functions:

L(x, a) =
pX

k=1

µk|hk(x, a)|
2 +

qX

k=p+1

µk max(0,�hk(x, a)).

where µk > 0 are penalization coe�cients (large in practice). 2

The implementation of the DP formula requires the knowledge and explicit computa-

tion of the transition probabilities P
a(x, dx0). In situations when they are unknown, this

leads to the problematic of reinforcement learning for computing the optimal control and

value function by relying on simulations of the environment. The challenging tasks from a

numerical point of view are then twofold:

1. Transition probability operator. Calculations for any x 2 X , a 2 A of P a
Vn+1(x),

for n = 0, . . . , N � 1. This is a computational challenge in high dimension d for the

state space with the “curse of dimensionality” due to the explosion of grid points in

deterministic methods.

2. Optimal control. Computation of the infimum in a 2 A of
⇥
f(x, a) + ⇢P

a
Vn+1(x)

⇤

for fixed x and n, and of ân(x) attaining the minimum if it exists. This is also a

computational challenge especially in high dimension q for the control space.
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The classical probabilistic numerical methods based on DP for solving the MDP are

sometimes called approximate dynamic programming methods, see e.g. [4], [29], and consist

basically of the two following steps:

(i) Approximate at each time step n the Qn value function defined as a conditional

expectation. This can be performed by regression Monte-Carlo (RMC) techniques

or quantization. RMC is typically done by least-square linear regression on a set of

basis function following the popular approach by Longsta↵ and Schwarz [24] initiated

for Bermudean option problem, where the suitable choice of basis functions might be

delicate. Conditional expectation can be also approximated by regression on neural

network as in [19] for American option problem, and appears as a promising and

e�cient alternative in high dimension to the linear regression. The main issue in

the controlled case concerns the simulation of the endogenous controlled MDP, and

this can be overcome by control randomization as in [17]. Alternatively, quantization

method consists in approximating the noise ("n) by a discrete random variable on a

finite grid, in order to reduce the conditional expectation to a finite sum.

(ii) Control search: Once we get an approximation (x, a) 7! Q̂n(x, a) of the Qn value

function, the optimal control ân(x) which achieves the minimum over a 2 A ofQn(x, a)

can be obtained either by an exhaustive search when A is discrete (with relatively

small cardinality), or by a (deterministic) gradient-based algorithm for continuous

control space (with relatively small dimension).

Recently, numerical methods by direct approximation, without DP, have been deve-

loped and made implementable thanks to the power of computers: the basic idea is to

focus directly on the control approximation by considering feedback control (policy) in a

parametric form:

an(x) = A(x; ✓n), n = 0, . . . , N � 1,

for some given function A(., ✓n) with parameters ✓ = (✓0, . . . , ✓N�1) 2 Rq⇥N , and minimize

over ✓ the parametric functional

J̃(✓) = E
"
N�1X

n=0

f(XA

n , A(x; ✓n)) + g(XA

N )

#
,

where (XA
n )n denotes the controlled process with feedback control (A(., ✓n))n. This ap-

proach was first adopted in [21], who used EM algorithm for optimizing over the parameter

✓, and further investigated in [13], [6], [15], who considered deep neural networks (DNN) for

the parametric feedback control, and stochastic gradient descent methods (SGD) for com-

puting the optimal parameter ✓. The theoretical foundation of these DNN algorithms has

been recently investigated in [14]. Deep learning has emerged recently in machine learning

as a successful technique for dealing with high-dimensional problems in speech recognition,

computer vision, etc (see e.g. [22], [9]). Let us mention that DNN approximation in stochas-

tic control has already been explored in the context of reinforcement learning (RL) (see [4]

and [30]), and called deep reinforcement learning in the artificial intelligence community

5



[26] (see also [23] for a recent survey) but usually for infinite horizon (stationary) control

problems.

In this paper, we combine di↵erent ideas from the mathematics (numerical probability)

and the computer science (reinforcement learning) communities to propose and compare

several algorithms based on dynamic programming (DP), and deep neural networks (DNN)

for the approximation/learning of (i) the optimal policy, and then of (ii) the value function.

Notice that this di↵ers from the classical approach in DP recalled above, where we first

approximate the Q-optimal state/control value function, and then approximate the opti-

mal control. Our learning of the optimal policy is achieved in the spirit of [13] by DNN,

but sequentially in time though DP instead of a global learning over the whole period

0, . . . , N � 1. Once we get an approximation of the optimal policy, and recalling the mar-

tingale property (1.4), we approximate the value function by Monte-Carlo (MC) regression

based on simulations of the forward process with the approximated optimal control. In

particular, we avoid the issue of a priori endogenous simulation of the controlled process in

the classical Q-approach. The MC regressions for the approximation of the optimal policy

and/or value function, are performed according to di↵erent features leading to algorithmic

variants: Performance iteration (PI) or hybrid iteration (HI), and regress now or regress

later/quantization in the spirit of [24] or [8]. Numerical results on several applications are

devoted to a companion paper [2]. The theoretical contribution of the current paper is to

provide a detailed convergence analysis of our three proposed algorithms: Theorem 4.1 for

the NNContPI Algo based on control learning by performance iteration with DNN, Theo-

rem 4.2 for the Hybrid-Now Algo based on control learning by DNN and then value function

learning by regress-now method, and Theorem 4.3 for the Hybrid-LaterQ Algo based on on

control learning by DNN and then value function learning by regress later method com-

bined with quantization. We rely mainly on arguments from statistical learning and non

parametric regression as developed notably in the book [12], for giving estimates of ap-

proximated control and value function in terms of the universal approximation error of the

neural networks.

The plan of this paper is organized as follows. We recall in Section 2 some basic results

about deep neural networks (DNN) and stochastic optimization gradient descent methods

used in DNN. Section 3 is devoted to the description of our three algorithms. We analyze

in detail in Section 4 the convergence of the three algorithms. Finally the Appendix collect

some Lemmas used in the proof of the convergence results.

2 Preliminaries on DNN and SGD

2.1 Neural network approximations

Deep Neural networks (DNN) aim to approximate (complex non linear) functions defined on

finite-dimensional space, and in contrast with the usual additive approximation theory built

via basis functions, like polynomial, they rely on composition of layers of simple functions.

The relevance of neural networks comes from the universal approximation theorem and the

Kolmogorov-Arnold representation theorem (see [20], [5] or [16]), and this has shown to be

successful in numerous practical applications.
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We consider here feedforward artificial network (also called multilayer perceptron) for

the approximation of the optimal policy (valued in A ⇢ Rq) and the value function (valued

in R), both defined on the state space X ⇢ Rd. The architecture is depicted in Figure 1,

and it is mathematically represented by functions

x 2 X 7�! �(z; ✓) 2 Ro
,

with o = q or 1 in our context, and where ✓ 2 ⇥ ⇢ Rp are the weights (or parameters) of

the neural networks. The DNN function � = �L with input layer �0 = (�i
0
)i = x 2 X

composed of d units (or neurons), L� 1 hidden layers (with layer ` composed of d` units),

and output layer composed of dL = o neurons is obtained by successive composition of

linear combination and activation function �` (that is a nonlinear monotone function like

e.g. the sigmoid, the rectified linear unit ReLU, the exponential linear unit ELU, or the

softmax):

�` = �`(w`�`�1 + �`) 2 Rd` , ` = 1, . . . , L,

for some matrix weights (w`) and vector weight (�`), aggregating into ✓ = (w`, �`)`=1,...,L.

A key feature of neural networks is the computation of the gradient (with respect to the

variable x and the weights ✓) of the DNN function via a forward-backward propagation

algorithm derived from chain rule composition. For example, for the sigmoid activation

function �`(y) = 1/(1 + e
�y), and noting that �0

`
= �`(1� �`), we have

h
@�`

@z

i

ij

=
h
w`

@�`�1

@z

i

ij

�i

`(1� �i

`), ` = 1, . . . , L, i = 1, . . . , d`, j = 1, . . . , d

while the gradient w.r.t. ✓ of K(✓) = K(�L(.; ✓)), for a real-valued di↵erentiable function

y 2 RdL 7! K(y), is given in backward induction by

�`

i :=
h
@K

@�`

i

i

�i

`(1� �i

`), ` = L, . . . , 1, i = 1, . . . , d`

h
@K

@w`

i

ij

= �j

`�1
�`

i ,

h
@K

@�`

i

i

= �`

i ,

h
@K

@�`�1

i

j

=
dX̀

k=1

�`

kw
kj

`
, j = 1, . . . , d`�1.

We refer to the online book [27] for a gentle introduction to neural networks and deep

learning.

2.2 Stochastic optimization in DNN

Approximation by means of DNN requires a stochastic optimization with respect to a set

of parameters, which can be written in a generic form as

inf
✓

E
⇥
Ln(Zn; ✓)

⇤
, (2.1)

where Zn is a random variable from which the training samples Z
(m)

n , m = 1, . . . ,M are

drawn, and Ln is a loss function involving DNN with parameters ✓ 2 Rp, and typically

di↵erentiable w.r.t. ✓ with known gradient D✓Ln.
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Figure 1: Representation of a neural network with d = 3, 2 hidden layers, d1 = d2 = 4, d3
= 1.

Several basic algorithms are already implemented in TensorFlow for the search of

infimum in (2.1). Given a training sample of size M , in all the following cases, the sequence

(✓kn)k2N tends to ✓n = argmin
✓

E
⇥
Ln(Zn; ✓)

⇤
under suitable assumptions on the learning rate

sequence (�k)1k=0
.

• Batch gradient descent: (compute the gradient over the full training set). Fix an

integer K, and do

✓
k+1

n = ✓
k

n � �k
1

M

MX

m=1

D✓Ln(Z
(m)

n ; ✓kn), for k = 1, . . . ,K.

The main problem with the Batch Gradient Descent is that the convergence is very

slow and also the computation of the sum can be painful for very large training sets.

Hence it makes it very stable, but too slow in most situations.

• Stochastic gradient descent (SGD): (compute the gradient over one random instance

in the training set)

✓
m+1

n = ✓
m

n � �mD✓Ln(Z
(m)

n ; ✓mn ), m = 1, . . . ,M � 1.

starting from ✓
0
n 2 Rp, with a learning rate �m. The Stochastic gradient algorithm

computes the gradient based on a single random instance in the training set. It is

then a fast but unstable algorithm.

• Mini-batch gradient descent: (compute the gradient over random small subsets of

the training set, i.e. mini-batches) let Mb be an integer than divides M . Mb stands

for the number of mini-batches and should be taken much smaller than M in the

applications.

For all k, . . . ,Mb,

– Randomly draw a subset
⇣
Z

(k,m)

n

⌘Mk+1

m=1

of size Mk+1 :=
M

Mb
in the training set.

– iterate: ✓k+1
n = ✓

k
n � �k

1

Mk+1

PMk+1
m=1

D✓Ln(Z
(m)

n ; ✓kn).
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The mini-batch gradient descent is often considered to be the best trade-o↵ between

speed and stability.

The three gradient descents that we just introduced are the first three historical algo-

rithms that has been designed to learn optimal parameters. Other methods such as the

Adaptive optimization methods AdaGrad, RMSProp, and finally Adam are also available.

Although not well-understood and even questioned (see e.g. [31]), the latter are often cho-

sen by the practitioners to solve (2.1) and appear to provide the best results in most of the

situations.

For sake of simplicity, we only refer in the sequel to the stochastic gradient descent method,

when presenting our algorithms. However, we recommend to test and use di↵erent algo-

rithms in order to know which are the ones that provide best and fastest results for a given

problem.

3 Description of the algorithms

We propose algorithms relying on a DNN approximation of the optimal policy that we

compute sequentially in time through the dynamic programming formula, and using perfor-

mance or hybrid iteration. The value function is then computed by Monte-Carlo regression

either by a regress now method or a regress later joint with quantization approach. These

variants lead to three algorithms for MDP that we detail in this section.

Let us introduce a set A of neural networks for approximating optimal policies, that is

a set of parametric functions x 2 X 7! A(x;�) 2 A, with parameters � 2 Rl, and a set V

of neural networks functions for approximating value functions, that is a set of parametric

functions x 2 X 7! �(x; ✓) 2 R, with parameters ✓ 2 Rp.

We are also given at each time n a probability measure µn on the state space X , which

we refer to as a training distribution. Some comments about the choice of the training

measure are discussed in Section 3.3.

3.1 Control learning by performance iteration

This algorithm, refereed in short as NNcontPI Algo, is designed as follows:

• For n = N � 1, . . . , 0, we keep track of the approximated optimal policies âk, k = n +

1, . . . , N � 1, and approximate the optimal policy at time n by ân = A(.; �̂n) with

�̂n 2 arg min
�2Rl

E
"
f(Xn, A(Xn;�)) +

N�1X

k=n+1

f(X̂�

k
, âk(X̂

�

k
)) + g(X̂�

N
)

#
, (3.1)

where Xn ; µn, X̂
�

n+1
= F (Xn, A(Xn;�), "n+1) ; P

A(Xn;�)(Xn, dx
0), and for k = n +

1, . . . , N � 1, X̂�

k+1
= F (X̂�

k
, âk(X̂

�

k
), "k+1) ; P

âk(X̂
�
k )(X̂�

k
, dx

0). Given estimate â
M

k
of âk,

k = n+ 1, . . . , N � 1, the approximated policy ân is estimated by using a training sample⇣
X

(m)

n , ("(m)

k+1
)k=N�1

k=n

⌘
,m= 1, . . . ,M of

⇣
Xn, ("k+1)

k=N�1

k=n

⌘
for simulating

⇣
Xn, (X̂

�

k+1
)k=N�1

k=n

⌘
,

and optimizing over the parameters � 2 Rl of the NN A(.;�) 2 A, the expectation in (3.1)

by stochastic gradient descent method (or its variants) as described in Section (2.2).
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I We then get an estimate of the optimal policy at any time n = 0, . . . , N � 1 by:

â
M

n = A(.; �̂M

n ) 2 A,

where �̂
M
n is the “optimal” parameter resulting from the SGD in (3.1) with a training

sample of size M . This leads to an estimated value function given at any time n by

V̂
M

n (x) = EM

"
N�1X

k=n

f(X̂n,x

k
, â

M

k (X̂n,x

k
)) + g(X̂n,x

N
)

#
, (3.2)

where EM is the expectation conditioned on the training set (used for computing
�
â
M

k

�
k
),

and
⇣
X̂

n,x

k

⌘

k=n,...,N

, is given by: X̂n,x
n = x, X̂n,x

k+1
; P

â
M
k (X̂n,x

k )(X̂n,x

k
, dx

0), k = n, . . . , N�1.

The dependence of the estimated value function V̂
M
n upon the training samples X(m)

k
, for

m = 1, . . . ,M , used at time k = n, . . . , N , is emphasized through the exponent M in the

notations.

Remark 3.1 The NNcontPI Algo can be viewed as a combination of the DNN algorithm

designed in [13] and dynamic programming. In the algorithm presented in [13], which totally

ignores the dynamic programming principle, one learns all the optimal controls A(.;�n), n

= 0, . . . , N � 1 at the same time, by performing one unique stochastic gradient descent.

This is e�cient as all the parameters of all the NN are getting trained at the same time,

using the same mini-batches. However, when the number of layers of the global neural

network gathering all the NN A(.;�n), n = 0, . . . , N�1 is large (say
P

N�1

n=0
`n � 100, where

`n is the number of layers in A(.,�n)), then one is likely to observe vanishing or exploding

gradient problems that will a↵ect the training of the weights and biais of the first layers

of the global NN (see [7] for more details). Therefore, it may be more reasonable to make

use of the dynamic programming structure when N is large, and learn the optimal policy

sequentially as proposed in our NNcontPI Algo. Notice that a similar idea was already

used in [11] in the context of uncertain volatility model where the authors use a specific

parametrization for the feedback control instead of a DNN adopted more generally here.

2

Remark 3.2 The NNcontPI Algo does not require value function iteration, but instead is

based on performance iteration by keeping track of the estimated optimal policies computed

in backward recursion. The value function is then computed in (3.2) as the gain functional

associated to the estimated optimal policies (âM
k
)k. Consequently, it provides usually a low

bias estimate but induces possibly high variance estimate and large complexity, especially

when N is large. 2

3.2 Control learning by hybrid iteration

Instead of keeping track of all the approximated optimal policies as in the NNcontPI Algo,

we use an approximation of the value function at time n+1 in order to compute the optimal

policy at time n. The approximated value function is then updated at time n by relying

10



on the martingale property (1.4) under the optimal control. This leads to the following

generic algorithm:

Generic Hybrid Algo

1. Initialization: V̂N = g

2. For n = N � 1, . . . , 0,

(i) Approximate the optimal policy at time n by ân = A(.; �̂n) with

�̂n 2 arg min
�2Rl

E
h
f(Xn, A(Xn;�)) + V̂n+1(X

A(.,�)

n+1
)
i
, (3.3)

where Xn ; µn, X̂
A(.,�)

n+1
= F (Xn, A(Xn;�), "n+1) ; P

A(Xn;�)(Xn, dx
0).

(ii) Updating: approximate the value function by

V̂n(x) = E
h
f(Xn, ân(Xn)) + V̂n+1(X

ân
n+1

)|Xn = x

i
. (3.4)

The approximated policy ân is estimated by using a training sample
⇣
X

(m)

n , "
(m)

n+1

⌘
, m

= 1, . . . ,M of (Xn, "n+1
) to simulate

⇣
Xn, X

A(.;�)

n+1

⌘
, and optimizing over the parameters �

2 Rl of the NN A(.;�) 2 A, the expectation in (3.3) by stochastic gradient descent method

(or its variants) as described in Section (2.2). We then get an estimate â
M
n = A

⇣
.; �̂M

n

⌘
.

The approximated value function written as a conditional expectation in (3.4) is estimated

according to a Monte Carlo regression, either by a regress now method (in the spirit of [19])

or a regress later (in the spirit of [8] and [3]) joint with quantization approach, and this

leads to the following algorithmic variants detailed in the two next paragraphs.

3.2.1 Hybrid-Now Algo

Given an estimate â
M
n of the optimal policy at time n, and an estimate V̂

M
n+1

of V̂n+1, we

estimate V̂n by neural networks regression, i.e.,

V̂
M

n 2 arg min
�(.;✓)2V

E
��f(Xn, â

M

n (Xn)) + V̂
M

n+1(X
â
M
n

n+1
) � �(Xn; ✓)

��2 (3.5)

using samples X(m)

n , X â
M
n ,(m)

n+1
, m = 1, . . . ,M of Xn ; µn, and X

â
M
n ,(m)

n+1
of X â

M
n

n+1
. In other

words, we have

V̂
M

n = �
⇣
.; ✓̂Mn

⌘
,

where ✓̂
M
n is the “optimal” parameter resulting from the SGD in (3.5) with a training

sample of size M .

11



3.2.2 Hybrid-LaterQ Algo

Given an estimate â
M
n of the optimal policy at time n, and an estimate V̂

M
n+1

of V̂n+1, the

regress-later approach for estimating V̂n is achieved in two stages: (a) we first regress/interpolate

the estimated value V̂
M
n+1

⇣
X

â
M
n

n+1

⌘
at time n+ 1 by a NN (or alternatively a Gaussian pro-

cess) �(X â
M
n

n+1
), (b) Analytical formulae are applied to the conditional expectation of this

NN of future values X
â
M
n

n+1
with respect to the present value Xn, and this is obtained by

quantization of the noise ("n) driving the dynamics (1.1) of the state process.

The ingredients of the quantization approximation are described as follows:

• We denote by "̂ a K-quantizer of the E-valued random variable "n+1 ; "1 (typi-

cally a Gaussian random variable), that is a discrete random variable on a grid � =

{e1, . . . , eK} ⇢ E
K defined by

"̂ = Proj�("1) :=
KX

`=1

e`1"12C`(�)
,

where C1(�), . . ., CK(�) are Voronoi tesselations of �, i.e., Borel partitions of the

Euclidian space (E, |.|) satisfying

C`(�) ⇢
n
e 2 E : |e� e`| = min

j=1,...,K

|e� ej |

o
.

The discrete law of "̂ is then characterized by

p̂` := P["̂ = e`] = P["1 2 C`(�)], ` = 1, . . . ,K.

The grid points (e`) which minimize the L
2-quantization error k"1 � "̂k2 lead to the

so-called optimal L-quantizer, and can be obtained by a stochastic gradient descent

method, known as Kohonen algorithm or competitive learning vector quantization

(CLVQ) algorithm, which also provides as a byproduct an estimation of the associated

weights (p̂`). We refer to [28] for a description of the algorithm, and mention that for

the normal distribution, the optimal grids and the weights of the Voronoi tesselations

are precomputed on the website http://www.quantize.maths-fi.com

• Recalling the dynamics (1.1), the conditional expectation operator is equal to

P
â
M
n (x)

W (x) = E
⇥
W (X â

M
n

n+1
)|Xn = x

⇤
= E

⇥
W (F (x, âMn (x), "1))

⇤
, x 2 X ,

that we shall approximate analytically by quantization via:

bP â
M
n (x)

W (x) := E
⇥
W (F (x, âMn (x), "̂))

⇤
=

KX

`=1

p̂`W
�
F (x, âMn (x), e`)

�
. (3.6)

The two stages of the regress-later are then detailed as follows:
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(a) (Later) interpolation of the value function: Given a DNN � (.; ✓) on Rd with para-

meters ✓ 2 Rp, we interpolate V̂
M
n+1

by

eV M

n+1(x) := �
�
x; ✓Mn+1

�
,

where ✓
M
n+1

is obtained via SGD (as described in paragraph 2.2) from the regression

of V̂
M
n+1

(X â
M
n

n+1
) against �

⇣
X

â
M
n

n+1
; ✓
⌘
, using training samples X

(m)

n , X
â
M
n ,(m)

n+1
, m =

1, . . . ,M of Xn ; µn, and X
â
M
n ,(m)

n+1
of X â

M
n

n+1
.

(b) Updating/approximation of the value function: by using the hat operator in (3.6)

for the approximation of the conditional expectation by quantization, we calculate

analytically

V̂
M

n (x) := f(x, a) + bP â
M
n eV M

n+1(x) = f(x, a) +
KX

`=1

p̂`�
�
F (x, âMn (x), e`); ✓

M

n+1

�
.

Remark 3.3 Let us discuss and compare the Algos Hybrid-Now and Hybrid-LaterQ. When

regressing later, one just has to learn a deterministic function through the interpolation

step (a), as the noise is then approximated by quantization for getting analytical formula.

Therefore, compared to Hybrid-Now, the Hybrid-LaterQ Algo reduces the variance of the

estimate V̂
M
n . Moreover, one has a wide choice of loss functions when regressing later, e.g.,

MSE loss function, L1-loss, relative error loss, etc, while the L2-loss function is required

to approximate of condition expectation using regress-now method. However, although

quantization is quite easy and fast to implement in small dimension for the noise, it might

be not e�cient in high-dimension compared to Hybrid-Now. 2

Remark 3.4 Again, we point out that the estimated value function V̂
M
n in Hybrid-Now

or Hybrid-LaterQ depend on training samples X
(m)

k
, m = 1, . . . ,M , used at times k =

n, . . . , N , for computing the estimated optimal policies âM
k
, and this is emphasized through

the exponent M in the notations. 2

3.3 Training sets design

We discuss here the choice of the training measure µn used to generate the training sets on

which will be computed the estimations. Two cases are considered in this section. The first

one is a knowledge-based selection, relevant when the controller knows with a certain degree

of confidence where the process has to be driven in order to optimize her cost functional.

The second case, on the other hand, is when the controller has no idea where or how to

drive the process to optimize the cost functional.

Exploitation only strategy

In the knowledge-based setting, there is no need for exhaustive and expensive (in time

mainly) exploration of the state space, and the controller can directly choose training sets

�n constructed from distributions µn that assign more points to the parts of the state space

where the optimal process is likely to be driven.

13



In practice, at time n, assuming we know that the optimal process is likely to stay in

the ball centered around the point mn and with radius rn, we choose a training measure

µn centered around mn as, for example N (mn, r
2
n), and build the training set as sample of

the latter.

Explore first, exploit later

• Explore first: If the agent has no idea of where to drive the process to receive large

rewards, she can always proceed to an exploration step to discover favorable subsets

of the state space. To do so, �n, the training sets at time n, for n = 0, . . . , N � 1,

can be built as uniform grids that cover a large part of the state space, or µ can be

chosen uniform on such domain. It is essential to explore far enough to have a well

understanding of where to drive and where not to drive the process.

• Exploit later: The estimates for the optimal controls at time tn, n = 0, . . . , N � 1,

that come up from the Explore first step, are relatively good in the way that they

manage to avoid the wrong areas of state space when driving the process. However,

the training sets that have been used to compute the estimated optimal control are

too sparse to ensure accuracy on the estimation. In order to improve the accuracy,

the natural idea is to build new training sets by simulating M times the process using

the estimates on the optimal strategy computed from the Explore first step, and then

proceed to another estimation of the optimal strategies using the new training sets.

This trick can be seen as a two steps algorithm that improves the estimate of the

optimal control.

3.4 Some remarks

We end this section with some comments about our proposed algorithms.

3.4.1 Case of finite control space: classification

In the case where the control space A is finite, i.e., Card(A) = L <1 with A = {a1, . . . , aL},

one can think of the optimal control searching task as a problem of classification. This

means that we randomize the control in the sense that given a state value x, the controller

chooses a` with a probability p`(x). We can then consider a neural network that takes

state x as an input, and returns at each time n a probability vector p = (p`)` with softmax

output layer:

z 7�! S`(z;�) =
exp(�`.z)P
L

`=1
exp(�`.z)

, ` = 1, . . . , L,

after some hidden layers. Finally, in practice, we use pure strategies given a state value x,

choose a`⇤(x) with

`
⇤(x) 2 arg max

`=1,...,L

p`(x).

For example, the NNcontPI Algo with classification reads as follows:

14



• For n = N � 1, . . . , 0, keep track of the approximated optimal policies âk, k = n +

1, . . . , N � 1, and compute

�̂n 2 argmin
�

E
h LX

`=1

p`(Xn;�)
⇣
f(Xn, a`) +

N�1X

k=n+1

f
�
X̂

`

k, âk(X̂
`

k)
�
+ g(X̂`

N )
⌘i

,

where Xn ; µn, X̂
`
n+1

= F (Xn, a`, "n+1), X̂
`

k+1
= F (X̂`

k
, âk(X̂`

k
), "n+1), for k =

n+ 1, . . . , N � 1, ` = 1, . . . , L.

• Update the approximate optimal policy at time n by

ân(x) = aˆ̀n(x)
with ˆ̀

n(x) 2 arg max
`=1,...,L

p`(x; �̂n).

3.4.2 Comparison of the algorithms

We emphasize the pros (+) and cons (-) of the three proposed algorithms in terms of bias

estimate for the value function, variance, complexity and dimension for the state space.

Algo Bias estimate Variance Complexity Dimension Number of

time steps N

NNContPI + - - + --

Hybrid-Now - + + + +

Hybrid-LaterQ - ++ + - +

This table is the result of observations made when numerically solving various control prob-

lems, combined to a close look at the rates of convergence derived for the three algorithms

in Theorems 4.1, 4.2 and 4.3. Note that the sensibility of the NNContPI and the Hybrid-

LaterQ algorithms w.r.t. the number of time steps N is clearly described in the studies of

their rate of convergence achieved in Theorems 4.1 and 4.3. However, we could only provide

a weak result on the rate of convergence of the Hybrid algorithm (see Theorem 4.3), which

in particular does not explain why the latter does not su↵er from large value of N , unless

stronger assumptions are made on the loss of the neural network estimating the optimal

controls.

4 Convergence analysis

This section is devoted to the convergence of the estimator V̂
M
n of the value function Vn

obtained from a training sample of size M and using DNN algorithms listed in Section 3.

Training samples rely on a given family of probability distributions µn on X , for n =

0, . . . , N , refereed to as training distribution (see Section 3.3 for a discussion on the choice

of µ). For sake of simplicity, we consider that µn does not depend on n, and denote then

by µ the training distribution. We shall assume that the family of controlled transition

probabilities has a density w.r.t. µ, i.e.,

P
a(x, dx0) = r(x, a;x0)µ(dx0).
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We shall assume that r is uniformly bounded in (x, x0, a) 2 X
2
⇥A, and uniformly Lipschitz

w.r.t. (x, a), i.e.,

(Hd) There exists some positive constants krk1 and [r]L s.t.

|r(x, a;x0)|  krk1, 8x, x
0
2 X , a 2 A,

|r(x1, a1;x
0)� r(x2, a2;x

0)|  [r]L(|x1 � x2|+ |a1 � a2|), 8x1, x2 2 X , a1, a2 2 A.

Remark 4.1 Assumption (Hd) is usually satisfied when the state and control space are

compacts. While the compactness on the control space A is not explicitly assumed, the

compactness condition on the state space X turns out to be more crucial for deriving

estimates on the estimation error (see Lemma 4.1), and will be assumed to hold true

for simplicity. Actually, this compactness condition on X can be relaxed by truncation

and localization arguments (see proposition A.1 in the appendix) by considering a training

distribution µ such that (Hd) is true and which admits a moment of order 1, i.e.
R
|y|dµ(y)

< +1. 2

We shall also assume some boundedness and Lipschitz condition on the reward functions:

(HR) There exists some positive constants kfk1, kgk1, [f ]L , and [f ]L s.t.

|f(x, a)|  kfk1, |g(x)|  kgk1, 8x 2 X , a 2 A,
|f(x1, a1)� f(x2, a2)|  [f ]L(|x1 � x2|+ |a1 � a2|),

|g(x1)� g(x2)|  [g]L |x1 � x2|, 8x1, x2 2 X , a1, a2 2 A.

Under this boundedness condition, it is clear that the value function Vn is also bounded:

kVnk1  (N � n)kfk1 + kgk1, 8n 2 {0, ..., N}.

We shall finally assume a Lipschitz condition on the dynamics of the MDP.

(HF) For any e 2 E, there exists C(e) such that for all couples (x, a) and (x0, a0) in X ⇥A:
��F (x, a, e)� F (x0, a0, e)

��  C(e)
�
|x� x

0
|+ |a� a

0
|
�
.

In the sequel, we define for any M 2 N⇤:

⇢M = E
"

sup
1mM

C("m)

#
,

where the ("m)m is a i.i.d. sample of the noise ". The rate of convergence of ⇢M toward

infinity will play a crucial role to show the convergence of the algorithms.

Remark 4.2 A typical example when (HF) holds is the case where F is defined through

the time discretization of an Euler scheme, i.e., as

F (x, a, ") := b(x, a) + �(x, a)",
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with b and � Lipschitz-continuous w.r.t. the couple (x, a), and " ⇠ N (0, Id), where Id is

the identity matrix of size d ⇥ d. Indeed, in this case, it is straightforward to see that

C(") = [b]L + [�]Lk"kd, where [b]L and [�]L stand for the Lipschitz coe�cients of b and �,

and k.kd stands for the Euclidean norm in Rd. Moreover, one can show that:

⇢M  [b]L + d[�]L
p
2 log(2dM), (4.1)

which implies in particular that

⇢M =
M!+1

O

⇣p
log(M)

⌘
.

Let us indeed check the inequality (4.1). For this, let us fix some integer M
0
> 0 and let

Z := sup
1mM 0

|✏
m

1 | where ✏
m
1

are i.i.d. such that ✏
1

1
⇠ N (0, 1). From Jentzen inequality to

the r.v. Z and the convex function z 7! exp(tz), where t > 0 will be fixed later, we get

exp (tE [Z])  E
⇥
exp

�
tZ
�⇤
 E

"
sup

1mM 0
exp

�
t|✏

m

1 |
�
#


M
0X

m=1

E
h
exp

�
t|✏

m

1 |
�i
 2M 0 exp

� t2

2

�
,

where we used the closed-form expression of the moment generating function of the folded

normal distributiona to write the last inequality. Hence, we have for all t > 0:

E
⇥
Z
⇤


log(2M 0)

t
+

t

2
.

We get, after taking t =
p
2 log(2M 0):

E
⇥
Z
⇤


p
2 log(2M 0). (4.2)

Since inequality kxkd  dkxk1 holds for all x 2 Rd, we derive

E
"

sup
1mM

C("m)

#
 [b]L + d[�]LE

"
sup

1mdM

C(✏m1 )

#
,

and apply (4.2) with M
0 = dM , to complete the proof of (4.1). 2

Remark 4.3 Under (Hd), (HR) and (HF), it is straightforward to see from the dy-

namic programming formula 1.3 that Vn is Lipschitz for all n = 0, . . . , N , with a Lipschitz

coe�cient [Vn]L, which -can be bounded by the minimum of the two following bounds:
(

[VN ]L = [g]L
[Vn]L  [f ]L + kVnk1[r]L, for n = 0, . . . , N � 1.

and (
[VN ]L = [g]L

[Vn]L  ⇢1
1�⇢

N�n
1

1�⇢1
+ ⇢

N�n

1
[g]L, for n = 0, . . . , N � 1,

a
The folded normal distribution is defined as the distribution of |Z| where Z ⇠ N1(µ,�). Its moment

generating function is given by t 7! exp

⇣
�2t2

2 + µt
⌘ ⇥

1� �
�
�

µ
� � �t

�⇤
+exp

⇣
�2t2

2 � µt
⌘ ⇥

1� �
�
µ
� � �t

�⇤
,

where � is the c.d.f. of N1(0, 1).
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which holds since we have by standard arguments:

(
[VN ]L = [g]L
[Vn]L  [f ]L + ⇢1[Vn+1]L for n = 0, . . . , N � 1.

Note that we use the usual convention 1�x
p

1�x
= p for p 2 N⇤ and x = 0. The Lipschitz

continuity of Vn plays a significant role to prove the convergence of the Hybrid and the

LaterQ algorithms described and studied in sections 4.2 and 4.3. 2

4.1 Control learning by performance iteration (NNcontPI)

In this paragraph, we analyze the convergence of the NN control learning by performance

iteration as described in Section 3.1. Actually, we shall consider neural networks for the

optimal policy with one hidden layer, K neurons with total variationb smaller than �, kernel

bounded by ⌘, Relu activation function for the hidden layer, and activation function �A for

the output layer (in order to ensure that the NN is valued in A): this is represented by the

parametric set of functions

⌘
A

�

K
:=

n
x 2 X 7! A(x;�) = (A1(x;�), . . . , Aq(x;�)) 2 A,

Ai(x;�) = �A
⇣ KX

j=1

cij(aij .x+ bij)+ + c0j

⌘
, i = 1, . . . , q,

� = (aij , bij , cij)i,j , aij 2 Rd
, kaijk  ⌘, bij , cij 2 R,

KX

i=0

|cij |  �

o
,

where k.k is the Euclidean norm in Rd.

Let KM , ⌘M and �M be sequences of integers such that

KM ����!
M!1

1, �M ����!
M!1

1, ⌘M ����!
M!1

1,

⇢
N�1

M
�
N�1

M
⌘
N�2

M

r
log(M)

M
����!
M!1

0.
(4.3)

We denote by AM := ⌘MA
�M
kM

the class of neural network for policy with norm ⌘M on the

kernel a = (aij), KM neurons and norm �M that satisfy conditions (4.3).

Remark 4.4 In the case where F is defined in dimension d as: F (x, a, ") = b(x, a) +

�(x, a)", we can use (4.1) to bound ⇢
N�n

M
and get:

⇢
N�n

M
=

M!+1
O

⇣p
log(M)

N�n
⌘
.

2

b
The total variation for the class of NN A

�
K is equal to

PK
i=0 |cij | with the notations above. See e.g. [1]

for a general definition.
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Recall that the approximation of the optimal policy in the NNcontPI algorithm is

computed in backward induction as follows: For n = N � 1, . . . , 0, generate a training

sample for the state X
(m)

n , m = 1, . . . ,M from the training distribution µ, and samples of

the exogenous noise
�
"
m

k

�M,N

m=1,k=n+1
.

• Compute the approximated policy at time n

â
M
n 2 argmin

A2AM

1

M

P
M

m=1

h
f(X(m)

n , A(X(m)

n )) + Ŷ
(m),A

n+1

i
(4.4)

where

Ŷ
(m),A

n+1
=

N�1X

k=n+1

f

⇣
X

(m),A

k
, â

M

k

⇣
X

(m),A

k

⌘⌘
+ g

⇣
X

(m),A

N

⌘
, (4.5)

with
�
X

(m),A

k

�N
k=n+1

defined by induction as follows, for m=1, . . . ,M :
8
<

:
X

(m),A

n+1
= F

⇣
X

m
n , A

�
X

m
n

�
, "

m
n+1

⌘

X
(m),A

k
= F

⇣
X

(m),A

k�1
, A
�
X

(m),A

k�1

�
, "

m

k

⌘
, for k = n+ 2, . . . , N.

• Compute the estimated value function V̂
M
n as in (3.2).

Remark 4.5 In order to simplify the theoretical analysis, we assume that the argmin in

(4.4) is exactly reached by running batch, mini-batch or stochastic gradient descent, which

are the methods that we used to code the algorithm in our companion paper. 2

Remark 4.6 The minimization problem in (4.4) is actually a problem of minimization

over the parameter � (of the neural network A) of the expectation of a function of noises�
X

(m)

n

�M
m=1

,
�
"
m

k

�M,N

m=1,k=n+1
and �, where F is iterated many times. Stochastic-gradient-

based methods are chosen for such a task, although the gradient becomes more and more

di�cult to compute when we are going backward in time, since there are more and more

iterations of F involved in the derivatives of the gradients.

The integrand is di↵erentiable if assumption (HF) holds, but it is always possible to

apply the stochastic-gradient-based algoritm for certain classes of non-di↵erentiable func-

tions F (see e.g. the gradient-descent implementation in TensorFlow which works with

the non-di↵erentiable at 0 ReLu activation functions.). 2

We now state our main result about the convergence of the NNcontPI algorithm.

Theorem 4.1 Assume that there exists an optimal feedback control (aopt
k

)k=n,...,N�1 for the

control problem with value function Vn, n = 0, . . . , N , and let Xn ; µ. Then, as M !1c

E
⇥
V̂

M
n (Xn)� Vn(Xn)

⇤
= O

 
⇢
N�n�1
M �

N�n�1
M ⌘

N�n�2
Mp

M

+ sup
nkN�1

inf
A2AM

E
h
|A(Xk)� a

opt

k
(Xk)|

i!
,

(4.6)

c
The notation xM = O(yM ) as M ! 1, means that the ratio |xM |/|yM | is bounded as M goes to infinity.
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where E stands for the expectation over the training set used to evaluate the approximated

optimal policies (âM
k
)nkN�1, as well as the path (Xn)nkN controlled by the latter.

Moreover, as M !1
d

EM

⇥
V̂

M

n (Xn)� Vn(Xn)
⇤
= OP

 
⇢
N�n�1

M
�
N�n�1

M
⌘
N�n�2

M

r
log(M)

M

+ sup
nkN�1

inf
A2AM

E
h
|A(Xk)� a

opt

k
(Xk)|

i!
,

(4.7)

where EM stands for the expectation conditioned by the training set used to estimate the

optimal policies (âM
k
)nkN�1.

Remark 4.7 1. The term
⇢
N�n�1
M �

N�n�1
M ⌘

N�n�2
Mp

M
should be seen as the estimation error. It

is due to the approximation of the optimal controls by means of neural networks in AM

using empirical cost functional in (4.4). We show in section A.2 that this term disappears

in the ideal case where the real cost functional (i.e. not the empirical one) is minimized.

2. The rate of convergence depends dramatically on N since it becomes exponentially

slower when N goes to infinity. This is a huge drawback for this performance iteration-

based algorithm. We will see in the next section that the rate of convergence of value

iteration-based algorithms do not su↵er from this dramatical dependence on N . 2

Comment: Since we clearly have Vn  V̂
M
n , estimation (4.6) implies the convergence

in L
1 norm of the NNcontPI algorithm, under condition (4.3), and in the case where

supnkN infA2AM E
⇥
|A(Xk)� a

opt

k
(Xk)|

⇤
�����!
M!+1

0. This is actually the case under some

regularity assumptions on the optimal controls, as stated in the following proposition.

Proposition 4.1 The two following assertions hold:

1. Assume that aopt
k

(Xk) 2 L1(µ) for k = n, ..., N � 1. Then

sup
nkN�1

inf
A2AM

E
⇥
|A(Xk)� a

opt

k
(Xk)|

⇤
�����!
M!+1

0. (4.8)

2. Assume that the function a
opt

k
is c-Lipschitz for k = n, ..., N � 1. Then

sup
nkN�1

inf
A2AM

E
⇥
|A(Xk)�a

opt

k
(Xk)|

⇤
< c

⇣
�M

c

⌘�2d/(d+1)

log
⇣
�M

c

⌘
+�MK

�(d+3)/(2d)

M
.

(4.9)

Proof. The first statement of Proposition 4.1 relies essentially on the universal approxima-

tion theorem, and the second assertion is stated and proved in [1]. For sake of completeness,

we recall the details in Section A.5 in the Appendix. 2

d
The notation xM = OP(yM ) as M ! 1, means that there exists c > 0 such that P

�
|xM | > c|yM |

�
! 0

as M goes to infinity.
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Remark 4.8 Note that the second statement in the above proposition is stronger than the

first one since it provides a rate of convergence of the approximation error. Fixing KM and

minimizing the r.h.s. of (4.9) over �M , results in

sup
nkN�1

inf
A2AM

E
⇥
|A(Xk)� a

opt

k
(Xk)|

⇤
< cK

� 1
d

M

✓
1 +

d+ 1

2d
log
�
KM

�◆
,

when we take �M = cK

d+1
2d

M
. Hence, for such a value of �M , the l.h.s. decreases to 0 with

rate proportional to log(KM )/ dp
KM . 2

The rest of this section is devoted to the proof of Theorem 4.1. Let us introduce some

useful notations. Denote by AX the set of Borelian functions from the state space X into

the control space A. For n = 0, . . . , N�1, and given a feedback control (policy) represented

by a sequence (Ak)k=n,...,N�1, with Ak in AX , we denote by J
(Ak)

N�1
k=n

n the cost functional

associated to the policy (Ak)k. Notice that with this notation, we have V̂
M
n = J

(â
M
k )

N�1
k=n

n .

We define the estimation error at time n associated to the NNContPI algorithm by

"
esti

PI,n := sup
A2AM

���
1

M

MX

m=1

h
f(X(m)

n , A(X(m)

n )) + Ŷ
(m),A

n+1

i
� EM

⇥
J
A,(â

M
k )

N�1
k=n+1

n (Xn)
⇤���,

with Xn ; µ: It measures how well the chosen estimator (e.g. mean square estimate) can

approximate a certain quantity (e.g. the conditional expectation). Of course we expect the

latter to cancel when the size of the training set used to build the estimator goes to infinity.

Actually, we have

Lemma 4.1 For n = 0, . . . , N � 1, we have

E["estiPI,n] 
�p

2 + 16
�
�
(N � n)kfk1 + kgk1

�
p
M

+
16�M
p
M

(
[f ]L

 
1 + ⇢M

1� ⇢
N�n�1

M

�
1 + ⌘M�M

�N�n�1

1� ⇢M

�
1 + ⌘M�M

�
!

(4.10)

+
�
1 + ⌘M�M

�N�n�1
⇢
N�n

M
[g]L

)

= O

✓
⇢
N�n�1

M
�
N�n�1

M
⌘
N�n�2

M
p
M

◆
, as M !1.

This implies in particular that

"
esti

PI,n = OP

 
⇢
N�n�1

M
�
N�n�1

M
⌘
N�n�2

M

r
log(M)

M

!
, as M !1, (4.11)

where we remind that ⇢M = E
"

sup
1mM

C("m)

#
is defined in (HF).
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Proof. The relation (4.10) states that the estimation error cancels when M ! 1 with a

rate of convergence of order O
⇣
⇢
N�n�1
M �

N�n�1
M ⌘

N�n�2
Mp

M

⌘
. The proof is in the spirit of the one

that can be found in chapter 9 of [12]. It relies on a technique of symmetrization by a ghost

sample, and a wise introduction of additional randomness by random signs. The details

are postponed in Section A.3 in the Appendix. The proof of (4.11) follows from (4.10) by

a direct application of Markov inequality. 2

Let us also define the approximation error at time n associated to the NNContPI algo-

rithm by

"
approx

PI,n
:= inf

A2AM

EM

h
J
A,(â

M
k )

N�1
k=n+1

n (Xn)
i
� inf

A2AX
EM

h
J
A,(â

M
k )

N�1
k=n+1

n (Xn)
i
, (4.12)

where we recall that EM denotes the expectation conditioned by the training set used to

compute the estimates (âM
k
)N�1

k=n+1
and the one of Xn ; µ.

"
approx

PI,n
measures how well the regression function can be approximated by means of neural

networks functions in AM (notice that the class of neural networks is not dense in the set

AX of all Borelian functions).

Lemma 4.2 For n = 0, . . . , N � 1, it holds as M !1,

E["approx
PI,n

] = O

 
⇢
N�n�1

M
�
N�n�1

M
⌘
N�n�2

M
p
M

+ sup
nkN�1

inf
A2AM

E
⇥
|A(Xk)� a

opt

k
(Xk)|

⇤
!
.

(4.13)

This implies in particular

"
approx

PI,n
= OP

 
⇢
N�n�1

M
�
N�n�1

M
⌘
N�n�2

M

r
log(M)

M
+ sup

nkN�1

inf
A2AM

E
⇥
|A(Xk)� a

opt

k
(Xk)|

⇤
!
.

(4.14)

Proof. See Section A.4 in Appendix for the proof of (4.13). The proof of (4.14) then

follows by a direct application of Markov inequality. 2

Proof of Theorem 4.1.

Step 1. Let us denote by

Ĵ
A,(â

M
k )

N�1
k=n+1

n,M
:=

1

M

MX

m=1

h
f
�
X

(m)

n , A(X(m)

n )
�
+ Ŷ

(m),A

n+1

i
,

the empirical cost function, from time n to N , associated to the sequence of controls

(A, (âM
k
)N�1

k=n+1
, , â

M

N�1
) and the training set, where we recall that Ŷ (m),A

n+1
is defined in (4.5).

We then have

EM

⇥
V̂

M

n (Xn)
⇤
= EM

h
J
(â

M
k )

N�1
k=n

n (Xn)
i
� Ĵ

(â
M
k )

N�1
k=n

n,M
+ Ĵ

(â
M
k )

N�1
k=n

n,M

 "
esti

PI,n + Ĵ
(â

M
k )

N�1
k=n

n,M
, (4.15)
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by definition of V̂ M
n and "

esti

PI,n
. Moreover, for any A 2 AM ,

Ĵ
A,(â

M
k )
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k=n+1

n,M
= Ĵ

A,(â
M
k )

N�1
k=n+1

n,M
� EM

h
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M
k )

N�1
k=n+1
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i
+ EM

h
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M
k )
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k=n+1

n (Xn)
i

 "
esti

PI,n + EM

h
J
A,(â

M
k )

N�1
k=n+1

n (Xn)
i
. (4.16)

Recalling that

â
M

n = argmin
A2AM

Ĵ
A,(â

M
k )

N�1
k=n+1

n,M
,

and taking the infimum over AM in the l.h.s. of (4.16) first, and in the r.h.s. secondly, we

then get

Ĵ
(â

M
k )

N�1
k=n

n,M
 "

esti

PI,n + inf
A2AM

EM

h
J
A,(â

M
k )

N�1
k=n+1

n (Xn)
i
.

Plugging this last inequality into (4.15) yields the following estimate

EM

⇥
V̂

M
n (Xn)

⇤
� infA2AM EM

h
J
A,(â

M
k )

N�1
k=n+1

n (Xn)
i
 2"esti

PI,n
. (4.17)

Step 2. By definition (4.12) of the approximation error, using the law of iterated conditional

expectations for Jn, and the dynamic programming principle for Vn with the optimal control

a
opt
n at time n, we have

inf
A2AM

EM

⇥
J
A,(â

M
k )

N�1
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n (Xn)
⇤
� EM [Vn(Xn)]

= "
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+ EMEa
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h
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(â
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N�1
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n+1
(Xn+1)� Vn+1(Xn+1)

i
,

where EA
n [.] stands for the expectation conditioned by Xn at time n and the training set,

when strategy A is followed at time n. Under the bounded density assumption in (Hd),

we then get

inf
A2AM

EM

⇥
J
A,(â

M
k )
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k=n+1

n (Xn)
⇤
� EM [Vn(Xn)]

 "
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i
, with Xn+1 ⇠ µ. (4.18)

Step 3. From (4.17) and (4.18), we have
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By induction, this implies

EM

⇥
V̂

M

n (Xn)� Vn(Xn)
⇤


N�1X

k=n

�
2"esti

PI,k + "
approx

PI,k

�
.

Use the estimations (4.11) for "
esti

PI,n
in Lemma 4.1, and (4.14) for "

approx

PI,n
in Lemma 4.2,

and observe that V̂n(Xn) � Vn(Xn) holds a.s., to complete the proof of (4.7). Finally, the

proof of (4.6) is obtained by taking expectation in (4.19), and using estimations (4.10) and

(4.13). 2

4.2 Hybrid-Now algorithm

In this paragraph, we analyze the convergence of the hybrid-now algorithm as described in

Section 3.2.1. We shall consider neural networks for the value function estimation with one

hidden layer, K neurons with total variation �, kernel bounded by ⌘, a sigmoid activation

function � for the hidden layer, and no activation function for the output layer (i.e. the

last layer): this is represented by the parametric set of functions

⌘
V
�

K
:=

n
x 2 X 7! �(x; ✓) =

KX

i=1

ci�(ai.x+ bi) + c0,

✓ = (ai, bi, ci)i, kaik  ⌘, bi 2 R,
KX

i=0

|ci|  �

o
.

Let ⌘M , KM and �M be integers such that:

⌘M ����!
M!1

1 , �M ����!
M!1

+1 , KM ����!
M!1

1,

�
4
MKM log(M)

M
����!
M!1

0 ,
�
4
M⇢

2
M⌘

2
M log(M)

M
����!
M!1

0,
(4.20)

where we remind that ⇢M is defined in (HF).

In the sequel we denote by VM := ⌘MV
�M
KM

the space of neural networks for the estimated

value functions at time n = 0, . . . , N � 1, parametrized by the values ⌘M , �M and KM that

satisfy (4.20). We also consider the class AM of neural networks for estimated feedback

optimal control at time n = 0, . . . , N � 1, as described in Section 4.1, with the same

parameters ⌘M , �M and KM .

Recall that the approximation of the value function and optimal policy in the hybrid-

now algorithm is computed in backward induction as follows:

• Initialize V̂
M

N
= g

• For n =N�1, . . . , 0, generate a training sampleX(m)

n , m = 1, . . . ,M from the training

distribution µ, and a training sample for the exogenous noise "
(m)

n+1
, m = 1, . . . ,M .

(i) compute the approximated policy at time n

â
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n 2 argmin
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MX
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n , A(X(m)

n )) + V̂
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)
⇤
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= F (X(m)

n , A(X(m)

n ), "(m)
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) ; P

A(X
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n )(X(m)

n , dx
0).
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(ii) compute the untruncated estimation of the value function at time n

Ṽ
M

n 2 argmin
�2VM

1

M

MX

m=1

h
f(X(m)

n , â
M

n (X(m)

n )) + V̂
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n+1(X
(m),â

M
n

n+1
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n )
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2

and set the truncated estimated value function at time n

V̂
M

n = max
⇣
min

�
V

M

n , kVnk1
�
,�kVnk1

⌘
. (4.21)

Remark 4.9 Notice that we have truncated the estimated value function in (4.21) by

an a priori bound on the true value function. This truncation step is natural from a

practical implementation point of view, and is also used for simplifying the proof of the

convergence of the algorithm. The conditions in (4.20) for the parameters are weaker than

those required in (4.3) for the NNcontPI algo by performance iteration, which implies a

much faster convergence w.r.t. the size of the training set. However, one should keep in

mind that unlike the performance iteration procedure, the value iteration one is biased

since the computation of V̂ M
n+1

�
X

A
n+1

�
are biased future rewards when decision A is taken

at time n and estimated optimal strategies are taken at time k � n+ 1. 2

We now state our main result about the convergence of the Hybrid-Now algorithm.

Theorem 4.2 Assume that there esxists an optimal feedback control (aopt
k

)k=n,...,N�1 for

the control problem with value function Vn, n = 0, . . . , N , and let Xn ; µ. Then, as
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(4.22)

where EM stands for the expectation conditioned by the training set used to estimate the

optimal policies (âM
k
)nkN�1.

Comment: Theorem 4.2 states that the estimator for the value function provided by

hybrid-now algorithm converges in L1(µ) when the size of the training set goes to infinity.

Note that the term
⇣
�
4

M

KM log(M)

M

⌘ 1
2(N�n)

stands for the estimation error made by esti-

mating empirically the value functions using neural networks, and
⇣
�
4

M

⇢
2
M⌘

2
M log(M)

M

⌘ 1
4(N�n)

stands for the estimation error made by estimating empirically the optimal control using

neural networks. The term sup
nkN

inf
�2VM

r
E
h
|�(Xk)� Vk(Xk)|2

i
stands for the approxi-

mation error made by estimating the value function as a neural network function in VM ,
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and sup
nkN

inf
A2AM

E
h
|A(Xk)� a

opt

k
(Xk)|

i
is the one made by estimating the optimal control

as a neural network function in AM .

In order to prove Theorem 4.2, let us first introduce the estimation error at time n

associated to the Hybrid-Now algorithm by
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We have the following bound on this estimation error:

Lemma 4.3 For n = 0, ..., N � 1, it holds:
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Proof. See Section A.6 in Appendix. 2

Remark 4.10 The result stated by lemma 4.3 is sharper than the one stated in Lemma

4.1 for the performance iteration procedure. The main reason is that we can make use of

the �M⌘M -Lipschitz-continuity of the estimation of the value function at time n+ 1. 2

We secondly introduce the approximation error at time n associated to the Hybrid-Now

algorithm by

"
approx

HN,n
:= inf

A2AM

EM

h
f
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,

where Ŷ
A
n+1

:= V̂
M
n+1

(F (Xn, A(Xn), "n+1)).

We have the following bound on this approximation error:

Lemma 4.4 For n = 0, ..., N � 1, it holds:
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(4.24)
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Proof. See Section A.7 in Appendix. 2

Proof of Theorem 4.2

Observe that not only the optimal strategy but also the value function is estimated at each

time step n = 0, ..., N � 1 using neural networks in the hybrid algorithm. It spurs us to

introduce the following auxiliary process (V̄ M
n )N

n=0
defined by backward induction as:

8
<

:
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N
(x) = g(x), for x 2 X ,

V̄
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n (x) = f(x, âMn (x)) + E

h
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(F (x, âMn (x), "n+1))
i
, for x 2 X ,

and we notice that for n = 0, ..., N � 1, V̄ M
n is the quantity estimated by V̂

M
n .

Step 1. We state the following estimates: for n = 0, ..., N � 1,
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and,
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2"estiHN,n + "

approx

HN,n

⌘
,

(4.26)

where EM,n,Xn stands for the expectation conditioned by the training set and Xn.

Let us first show the estimate (4.25). Note that inequality

V̄
M

n (Xn)� inf
a2A

n
f(Xn, a) + Ea

M,n,Xn

h
V̂

M

n+1(Xn+1)
io
� 0

holds because â
M
n cannot do better than the optimal strategy. Take its expectation to get

the first inequality in (4.25). Moreover, we write

EM

⇥
V̄

M

n (Xn)
⇤
 EM

h
f
�
Xn, â

M

n (Xn)
�
+ V̂

M
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⇣
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â
M
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⌘i

 inf
A2AM
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h
f (Xn, A(Xn)) + V̂

M
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�
X

A

n+1

�i
+ 2"estiHN,n,

which holds by the same arguments as those used to prove (4.17). We deduce that

EM

⇥
V̄

M

n (Xn)
⇤
 inf

A2AX
EM

h
f (Xn, A(Xn)) + V̂

M

n+1

�
X

A

n+1

�i
+ "

approx

HN,n
+ 2"estiHN,n
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a2A

n
f (Xn, a) + Ea

M

h
V̂

M

n+1 (Xn+1)
��Xn

io�
+ "

approx

HN,n
+ 2"estiHN,n.

This completes the proof of the second inequality stated in (4.25). On the other hand, not-

ing

����V̄
M
n (Xn)� inf

a2A

n
f(Xn, a) + Ea

M

h
V̂

M

n+1(Xn+1)
��Xn

io����  2 ((N � n)kfk1 + kgk1) and

applying (4.25), we obtain the inequality (4.26).
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Step 2. We state the following estimation: for all n 2 {0, ..., N}

���V̂ M

n (Xn)� V̄
M

n (Xn)
���
M,1

= OP

 
�
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M

r
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log(M)
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k�(Xn)� V M
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r���A(Xn)� a
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���
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!
,

(4.27)

where k.kM,p stands for the Lp norm conditioned by the training set, i.e. k.kM,p =
⇣
EM [|.|p]

⌘ 1
p
,

for p 2 {1, 2}. The proof relies on Lemma A.1 and Lemma A.2 (see Section A.8 in Ap-

pendix) which are proved respectively in [18] (see their Theorem 3) and [19].

Let us first show the following relation:
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(4.28)

For this, take �M = �
4

M
KM

log(M)

M
, and let � > �M . Apply Lemma A.2 to obtain:
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KM

p
log(M), (4.29)

where N2(",V, xM1 ) stands for the "-covering number of V on x
M
1
, which is introduced in

section A.8, and where the last line holds since we assumed M�M
�2
M
���!
M!0

0. Since � >

�M := �
4

M
KM

log(M)

M
, we then have

p
�
p
KM

p
log(M) 

p
M�

�2
M

, which implies that (A.33)

holds by (4.29). Therefore, by application of Lemma A.1, it holds:
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h��Ṽ M

n (Xn)� V̄
M

n (Xn)
��2
i
= OP

✓
�
4

MKM

log(M)

M
+ inf

�2VM

E
h
|�(Xn)� V̄

M

n (Xn)|
2

i◆
.

It remains to note that EM

h��V̂ M
n (Xn)� V̄

M
n (Xn)
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i
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h��Ṽ M
n (Xn)� V̄

M
n (Xn)
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holds, and this completes the proof of (4.28).
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Next, let us show
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���(Xn)� V̄n(Xn)
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For this, take some arbitrary � 2 VM and split
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To bound the last term in the r.h.s. of (4.31), we write
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Use the dynamic programming principle, assumption (Hd) and (4.26) to get:
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We then notice that
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and use Lemma 4.4 to bound "
approx

HN,n
. By plugging into (4.31), and using the estimations in

Lemmas 4.3 and 4.4, we obtain the estimate (4.30). Together with (4.28), this proves the

required estimate (4.27). By induction, we get as M !1,
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which completes the proof of Theorem 4.2. 2
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4.3 Hybrid-LaterQ algorithm

In this paragraph, we analyze the convergence of the Hybrid-LaterQ algorithm described

in Section 3.2.2.

We shall make the following assumption on F to ensure the convergence of the Hybrid-

LaterQ algorithm.

(HF-LQ) Assume F to be such that:

1. (Estimation error Assumption) (HF) holds, i.e. for all e 2 E, there exists C(e) > 0

such that for all couples (x, a) and (x0, a0) in X ⇥ A:
��F (x, a, ")� F (x0, a0, ")

��  C(")
�
|x� x

0
|+ |a� a

0
|
�
.

Recall that for all integer M > 0, ⇢M is defined as

⇢M = E
h

sup
1mM

C("m)
i
,

where the ("m)m is a i.i.d. sample of the noise ".

2. (Quantization Assumption) There exists a constant [F ]L > 0 such that for all (x, a) 2

X ⇥ A and all pair of r.v. (", "0), it holds:

kF (x, a, ")� F (x, a, "0)k2  [F ]Lk"� "
0
k2.

As for the hybrid-now algorithm, we shall consider neural networks for the value function

estimation with one hidden layer, K neurons with total variation �, kernel bounded by ⌘,

a sigmoid activation function � for the hidden layer, and no activation function for the

output layer (i.e. the last layer), which is represented by the parametric set of function
⌘
V
�

K
. Let ⌘M , KM and �M be integers such that:

KM ����!
M!1

1 , �M ����!
M!1

1 , ⌘M ����!
M!1

1

⇢M⌘M�
2

M

q
log(M)

M
����!
M!1

0.
(4.32)

In the sequel we denote by VM := ⌘MV
�M
KM

the space of neural networks parametrized by

the values ⌘M , �M and KM that satisfy (4.32). We also consider the class AM of neural

networks for estimated feedback optimal control at time n = 0, . . . , N � 1, as described in

Section 4.1, with the same parameters ⌘M , �M and KM .

Recall that the approximation of the value function and optimal policy in the Hybrid-

LaterQ algorithm is computed in backward induction as follows:

• Initialize V̂
M

N
= g

• For n =N�1, . . . , 0, generate a training sampleX(m)

n , m = 1, . . . ,M from the training

distribution µ, and a training sample for the exogenous noise "
(m)

n+1
, m = 1, . . . ,M .
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(i) compute the approximated policy at time n

â
M

n 2 argmin
A2AM

1

M
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⇥
f(X(m)
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n )) + V̂
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)
⇤
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= F (X(m)

n , A(X(m)

n ), "(m)

n+1
) ; P

A(X
(m)
n )(X(m)

n , dx
0).

(ii) compute an untruncated interpolation of the value function at time n+ 1

Ṽ
M
n+1

2 argmin
�2VM

1

M

P
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m=1

h
V̂

M
n+1

(X(m),â
M
n

n+1
)� �

�
X

(m),â
M
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n+1

�i2
, (4.33)

and set the truncated interpolation of the value function at time n+ 1

Ṽ
trun

n+1 = max
⇣
min

�
Ṽ

M

n+1, kVn+1k1
�
,�kVn+1k1

⌘
.

(iii) update/compute the estimated value function

V̂
M

n (x) = f(x, âMn (x)) +
LX

`=1

p`Ṽ
trun

n+1

�
F (x, âMn (x), e`)

�
,

where "̂n is a L-optimal quantizer of "n on the grid {e1, . . . , eL} with weights

(p1, . . . , pL).

Remark 4.11 1. It is straightforward to see that the neuronal network functions in VM

are Lipschitz with Lipschitz coe�cient bounded by ⌘M�M . We highly rely on this property

to show the convergence of the Hybrid-LaterQ algorithm.

2. Note that (4.33) is an interpolation step. In the pseudo-code above, we decided to

interpolate the value function Ṽ
Q
n using neural networks in VM by reducing an empirical

quadratic norm. However, we could have chosen other families of functions and other loss

criterion to minimize. Gaussian processes have been recently reconsidered to interpolate

functions, see [25]. 2

We now state our main result about the convergence of the Hybrid-LaterQ algorithm.

Theorem 4.3 Assume that there esxists an optimal feedback control (aopt
k

)k=n,...,N�1 for

the control problem with value function Vn, n = 0, . . . , N . Take Xn ; µ, and let LM be a

sequence of integers such that

LM ����!
M!1

1, and ⌘M�M

L
1/d
M

����!
M!1

0.

Take LM points for the optimal quantization of the exogenous noise. Then, it holds as

M !1:
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E [|�(Xk)� Vk(Xk)|]

!
. (4.34)
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Comment: Theorem 4.3, combined to Proposition 4.1, show that estimator V̂ M
n provided

by Hybrid-LaterQ algorithm is consistent, i.e. converges in L1 toward the value function

Vn at time n when the number of points for the regression and quantization goes to infinity.

Remark 4.12 Note that the dimension d of the state space appears (explicitly) in the

quantization error written in (4.34), as well as (implicitly) in the approximation errors

associated to the value functions and optimal control learning. See for example (4.9) for

an explicit dependence of the approximation error on d. 2

In order to prove Theorem 4.3, let us introduce the estimation error at time n associated

to the Hybrid-LaterQ algorithm by

"
esti

LQ,n := sup
A2AM

�����
1
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MX

m=1

h
f(X(m)

n , A(X(m)

n )) + Ŷ
(m),A
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i
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M,n,Xn

h
f(Xn, A(Xn)) + V̂
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�i
�����,

where Ŷ
(m),A

n+1
= V̂

M
n+1

�
X

(m),A

n+1

�
, and EA

M,n,Xn
[.] stands for the expectation conditioned by

the training set and Xn when decision A has been taken at time n.

We have the following bound on this estimation error:

Lemma 4.5 For n = 0, . . . , N � 1, it holds:

E
⇥
"
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Moreover,
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⇥
"
esti

LQ,n

⇤
=

M!1
O

 
⇢M⌘M�

2
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r
log(M)

M

!
. (4.36)

Remark 4.13 The result stated in Lemma 4.5 is the same as the one stated in Lemma 4.3

for the hybrid-now algorithm. This result can actually be proved using the same arguments,

so we omit the proof here. 2

Next, we introduce the approximation error at time n associated to the Hybrid-LaterQ

algorithm by

"
approx

LQ,n
= inf

A2AM

EM

h
f
�
Xn, A(Xn)

�
+ Ŷ

A

n+1

i
� inf

A2AX
EM

h
f
�
Xn, A(Xn)

�
+ Ŷ

A

n+1

i
,

where Ŷ
A
n+1

:= V̂
M
n+1

(F (Xn, A(Xn), "n+1)).

We have the following bound on this approximation error, which is similar to the one

stated in Lemma 4.4 for the Hybrid-Now algorithm. The proof is similar and is thus omitted

here.
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Lemma 4.6 For n = 0, ..., N � 1, it holds:

"
approx

LQ,n
 ([f ]L + [r]LkVn+1k1) inf

A2AX
EM

⇥��A(Xn)� a
opt

n (Xn)
��⇤

+ 2krk1EM
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���
i
.

(4.37)

Proof of Theorem 4.3.

We split the L
1 norm as follows:
���V̂ M

n (Xn)� Vn(Xn)
���
M,1
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opt

n

��
M,1

(4.38)

+
��V̄ opt

n � Vn

��
M,1

,

where (V̄ M
n )n is defined as:

(
V̄

M

N
(x) = g(x)

V̄
M
n (x) = f(x, âMn (x)) + EM

⇥
Ṽ

trunc

n+1

�
F (x, âMn (x), "n+1)

�⇤
, n = 0, . . . , N � 1,

and (V̄ opt
n )n is defined as:

(
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N
(x) = g(x)

V̄
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n (x) = infa2A

n
f(x, a) + EM

⇥
Ṽ

trunc

n+1

�
F (x, a, "n+1)

�⇤o
, n = 0, . . . , N � 1.

Recall that k.kM,p = (EM [|.|p])
1
p stands for the Lp-norm conditioned by the training set,

for p 2 {1, 2}.

Step 1: The first term in the r.h.s. of (4.38) is the quantization error. We show that

���V̂ M

n � V̄
M

n

���
M,1

= OP
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L
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!
, as M !1. (4.39)

Denote by "
Q
p := kV̂ M

n (Xn)� V̄
M
n (Xn)kp the Lp-quantization error, for p 2 {1, 2}. Since

Ṽ
trunc
n is Lipschitz, for n 2 {0, ..., N}, with its Lipschitz coe�cient bounded by ⌘M�M , we

thus get:

"
Q

2
:= kV̂ M

n (Xn)� V̄
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n (Xn)k2  ⌘M�M [F ]Lk"̂n+1 � "n+1k2, (4.40)

from assumption (HF-LQ). Now, recall by Zador theorem about optimal quantization (see

[10]) that there exists some positive constant C such that

lim
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2
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2

2

⌘
= C.

By using Zador theorem in (4.40) and with inequality "
Q

1
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Q

2
, we obtain the bound (4.39)

for the quantization error.

Step 2: We show: as M !1,
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Denote by

R̂n+1

⇣
Ṽ
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which, after noticing that
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implies:
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Once again from the central limit theorem, we derive:
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Indeed, first write

P
 

inf
�2VM

1

M

MX

m=1

����(X(m)

n+1
)� V̂

M

n+1(X
(m)

n+1
)
���
2



r
log(M)

M
+ inf

�2VM

����(Xn+1)� V̂
M

n+1(Xn+1)
���
2

2

!

 P
 

1

M

MX

m=1

����(X(m)

n+1
)� V̂

M

n+1(X
(m)

n+1
)
���
2



r
log(M)

M
+ inf

�2VM

����(Xn+1)� V̂
M

n+1(Xn+1)
���
2

2

!

for all � 2 VM ,

 P
 

1

M

MX

m=1

����̃(X(m)

n+1
)� V̂

M

n+1(X
(m)

n+1
)
���
2



r
log(M)

M
+
����̃(Xn+1)� V̂

M

n+1(Xn+1)
���
2

2

!
,
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where �̃ = argmin
�2VM

����(Xn+1)� V̂
M
n+1

(Xn+1)
���
2

2

. Then apply the Central limit theorem to

get (4.43).

Plugging (4.43) into (4.42) leads to

Rn+1

⇣
Ṽ

trunc

n+1

⌘
= OP

 r
log(M)

M
+ inf

�2VM

����(Xn+1)� V̂
M

n+1(Xn+1)
���
2

2

!
.

Apply the triangular inequality to finally obtain:

Rn+1

⇣
Ṽ

trunc

n+1

⌘
= OP

 r
log(M)

M
+ inf

�2VM

k�(Xn+1)� Vn+1(Xn+1)k
2

2

+
���Vn+1(Xn+1)� V̂

M

n+1(Xn+1)
���
2

2

!
.

It remains to notice that
���Vn+1(Xn+1)� V̂

M

n+1(Xn+1)
���
2

2

 ((N � n� 1)kfk1 + kgk1)
���Vn+1(Xn+1)� V̂

M

n+1(Xn+1)
���
M,1

,

to obtain inequality (4.41).

Step 3: let us show

��V̄ M

n � V̄
opt

n

��
M,1

= OP

 
⇢M⌘M�

2

M

r
log(M)

M
+ inf

A2AM

��A(Xn)� a
opt

n (Xn)
��
M,1

+
���Ṽ trunc

n+1 (Xn)� Vn(Xn)
���
M,1

!
.

(4.44)

Note that once again it holds

��V̄ M

n � V̄
opt

n

��
M,1
 2"estin + "

approx

n ,

which can be shown by similar arguments as those used to prove of inequality (4.25). It

remains to bound the estimation and approximation errors by using estimations (4.36) and

(4.37) to get (4.44).

Step 4: We show

��V̄ opt

n (Xn)� Vn(Xn)
��
M,1
 krk1

���V̂ M

n+1(Xn+1)� Vn+1(Xn+1)
���
M,1

(4.45)

+ krk1
���Ṽ trunc

n+1 (Xn+1)� V̂
M

n+1(Xn+1)
���
M,1

,

where Xn+1 ⇠ µ. For this, denote by (V̄
0
n)0nN the following auxiliary process:

(
V̄

0
N
(x) = g(x)

V̄
0
n(x) = infa2A

n
f(x, a) + EM

⇥
V̂

M
n+1

�
F (x, a, "n+1)

�⇤o
, n = 0, . . . , N � 1,
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and notice that we have under assumption (Hd):

��V̄ opt

n (Xn)� Vn(Xn)
��
M,1


���V̄ opt

n (Xn)� V̄
0
n(Xn)

���
M,1

+
���V̄

0
n(Xn)� Vn(Xn)

���
M,1

 krk1

���V̂ M

n+1(Xn+1)� Vn+1(Xn+1)
���
M,1

+ krk1
���Ṽ trunc

n+1 (Xn+1)� V̂
M

n+1(Xn+1)
���
M,1

,

as stated in (4.45).

Step 5 Conclusion: By plugging (4.39), (4.44) and (4.45) into (4.38), we derive the following

bound for the l.h.s. of (4.38):

���V̂ M

n (Xn)� Vn(Xn)
���
M,1

= OP

 
⌘M�M

L
1/d

M

+ ⇢M⌘M�
2

M

r
log(M)

M

+ inf
�2VM

k�(Xn+1)� Vn+1(Xn+1)kM,1
+ inf

A2AM

��A(Xn)� a
opt

n (Xn)
��
M,1

+
���V̂ M

n+1(Xn)� Vn+1(Xn+1)
���
M,1

!
, as M ! +1.

By induction, we get for n = 0, . . . , N � 1:

���V̂ M

n (Xn)� Vn(Xn)
���
M,1

= OP

 
⌘M�M

L
1/d

M

+ ⇢M⌘M�
2

M

r
log(M)

M

+ sup
nkN

inf
A2AM

���A(Xk)� a
opt

k
(Xk)

���
M,1

+ sup
n+1kN

inf
�2VM

k�(Xk)� Vk(Xk)kM,1

!
,

which is the result stated in Theorem 4.3. 2

A Appendix

A.1 Localization

In this section, we show how to relax the boundedness condition on the state space by a

localization argument.

Let R > 0. Consider the localized state space B̄
X
d
(0, R) := X \ {kxkd  R}, where k.kd

is the Euclidean norm of Rd. Let
�
X̄n

�
0nN

be the Markov chain defined by its transition

probabilities as

P
⇣
X̄n+1 2 O

���X̄n = x, a

⌘
=

Z

O

r(x, a; y)d⇡R � µ(y), for n = 0, . . . , N � 1,

for all Borelian O in B̄
X
d
(0, R), where ⇡R is the Euclidean projection of Rd on B̄

X
d
(0, R),

and ⇡R � µ is the pushforward measure of µ. Notice that the transition probability of X̄

36



admits the same density r, for which (Hd) holds, w.r.t. ⇡R � µ.

Define (V̄ R
n )n as the value function associated to the following stochastic control problem

for
�
X̄n

�
0nN

:

8
><

>:

V̄
R

N
(x) = g(x),

V̄
R
n (x) = inf

↵2C
E
"
N�1X

k=n

f
�
X̄k,↵k

�
+ g

�
X̄N

�
#
, for n = 0, . . . , N � 1,

(A.1)

for x 2 B̄
X
d
(0, R). By the dynamic programming principle, (V̄ R

n )n is solution of the following

Bellman backward equation:
8
><

>:

V̄
R

N
(x) = g(x)

V̄
R
n (x) = inf

a2A

⇢
f(x, a) + Ea

n

h
V̄

R

n+1

�
⇡R

�
F (x, a, "n+1)

��i�
, 8x 2 B

X
d
(0, R),

where, again, ⇡R is the Euclidean projection on B
X
d
(0, R).

We shall assume two conditions on the measure µ.

(Hloc) µ is such that:

E
⇥
|⇡R(X)�X|

⇤
����!
R!1

0 and P (|X| > R) ����!
R!1

0, where X ⇠ µ.

Using the dominated convergence theorem, it is straightforward to see that (Hloc) holds

if µ admits a moment of order 1.

Proposition A.1 Let Xn ⇠ µ. It holds:

E
h���V̄ R

n

�
⇡R(Xn)

�
� Vn

�
Xn

����
i
 kV k1

⇣
[r]LE [|⇡R(Xn)�Xn|] + 2P (|Xn| > R)

⌘1� krkN�n
1

1� krk1

+ [g]Lkrk
N�n

1 E [|⇡R(Xn)�Xn|] ,

where we denote kV k1 = sup
0kN

kVkk1, and use the convention 1�x
p

1�x
= p for x = 0 and

p > 1. Consequently, for all n = 0, ..., N , we get under (Hloc):

E
h���V̄ R

n

�
⇡R(Xn)

�
� Vn

�
Xn

����
i
����!
R!1

0, where Xn ⇠ µ.

Comment: Proposition A.1 states that if X is not bounded, the control problem (A.1)

associated to a bounded controlled process X̄ can be as close as desired, in L1(µ) sense,

to the original control problem by taking R large enough. Moreover, as stated before, the

transition probability of X̄ admits the same density r as X w.r.t. the pushforward measure

⇡R � µ.

Proof of Proposition A.1. Take Xn ⇠ µ and write:

E
h��V̄ R

n (⇡R(Xn))� Vn(Xn)
��
i
 E

⇥��V̄ R

n (Xn)� Vn(Xn)
��1|Xn|R

⇤

+ E
⇥��V̄ R

n (⇡R(Xn))� Vn(Xn)
��1|Xn|�R

⇤
. (A.2)
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Let us first bound the first term in the r.h.s. of (A.2), by showing that, for n = 0, . . . , N�1:

E
⇥��V̄ R

n (Xn)� Vn(Xn)
��1|Xn|R

⇤
 krk1E

h��V̄ R

n+1(⇡R(Xn+1))� Vn+1(Xn+1)
��
i

+ [r]LkVn+1k1E [|⇡R(Xn+1)�Xn+1|] , with Xn+1 ⇠ µ.

(A.3)

Take x 2 B̄d(0, R) and notice that

��V̄ R

n (x)� Vn(x)
��  inf

a2A

⇢Z

A

��V̄ R

n+1 (⇡R(y))� Vn+1(y)
�� r (x, a;⇡R(y)) dµ(y)

+

Z
|Vn+1(y)| |r(x, a;⇡R(y))� r(x, a; y)| dµ(y)

�

 krk1E
⇥��V̄ R

n+1 (⇡(Xn+1))� Vn+1 (Xn+1)
��⇤

+ [r]LkVn+1k1E [|⇡R(Xn+1)�Xn+1|] , where Xn+1 ⇠ µ.

It remains to inject this bound in the expectation to obtain (A.3).

To bound the second term in the r.h.s. of (A.2), notice that
��V̄ R

n (⇡R(Xn))� Vn(Xn)
��  2kVnk1

holds a.s., which implies:

E
⇥��V̄ R

n (⇡R(Xn))� Vn(Xn)
��1|Xn|�R

⇤
 2kVnk1P (|Xn| > R) . (A.4)

Plugging (A.3) and (A.4) into (A.2) yields:

E
h��V̄ R

n (⇡R(Xn))� Vn(Xn)
��
i
 krk1E

h��V̄ R

n+1(⇡R(Xn+1))� Vn+1(Xn+1)
��
i

+ [r]LkVn+1k1E [|⇡R(Xn+1)�Xn+1|] + 2kVnk1P (|Xn| > R) ,

with Xn and Xn+1 i.i.d. following the law µ. The result stated in proposition A.1 then

follows by induction. 2

A.2 Forward evaluation of the optimal controls in AM

We evaluate in this section the real performance of the best controls in AM .

Let (aAM
n )N�1

n=0
be the sequence of optimal controls in the class of neural networks AM ,

and denote by (JAM
n )0nN the cost functional sequence associated to (aAM

n )N�1

n=0
and char-

acterized as solution of the Bellman equation:
8
<

:
J
AM
N

(x) = g(x)

J
AM
n (x) = inf

A2AM

n
f(x,A(x)) + EA

n,Xn
[JAM

n+1
(Xn+1)]

o
,

where EA

n,Xn
[·] stands for the expectation conditioned by Xn and when the control A is

applied at time n.

In this section, we are interested in comparing J
AM
n to Vn. Note that Vn(x)  J

AM
n (x)

holds for all x 2 X , since AM is included in the set of the Borelian functions of X . We can

actually show the following:
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Proposition A.2 Assume that there exists a sequence of optimal feedback controls (aoptn )0nN�1

for the control problem with value function Vn, n = 0, . . . , N . Then it holds, as M !1:

E
⇥
J
AM
n (Xn)� Vn(Xn)

⇤
= O

 
sup

nkN�1

inf
A2AM

E
h
|A(Xk)� a

opt

k
(Xk)|

i!
. (A.5)

Remark A.1 Notice that there is no estimation error term in (A.5), since the optimal

strategies in AM are defined as those minimizing the real cost functionals in AM , and not

the empirical ones. 2

Proof of Proposition A.2. Let n 2 {0, ..., N � 1}, and Xn ⇠ µ. Take A 2 AM , and

denote J
A
n (Xn) = f(x,A(x)) + EA

n,Xn
[JAM

n+1
(Xn+1)]. Clearly, we have J

AM
n = min

A2AM

J
A

n .

Moreover:

E
h
J
A

n (Xn)� Vn(Xn)
i
 E

h
|f(Xn, A(Xn))� f(Xn, a

opt

n (Xn))|
i

+ E
h
|J

AM
n+1

(F (Xn, A(Xn), "n+1))� Vn+1(F (Xn, a
opt

n (Xn), "n+1))|
i

 [f ]LE
h
|a

opt

n (Xn)�A(Xn)|
i

+ E
h
|Vn+1(F (Xn, A(Xn), "n+1))� Vn+1(F (Xn, a

opt

n (Xn), "n+1))|
i

+ E
h
|J

AM
n+1

(F (Xn, A(Xn), "n+1))� Vn+1(F (Xn, A(Xn), "n+1))|
i
.

(A.6)

Applying assumption (Hd) to bound the last term in the r.h.s. of (A.6) yields

E
h
J
A

n (Xn)� Vn(Xn)
i

�
[f ]L + kVn+1k1[r]L

�
E
h
|a

opt

n (Xn)�A(Xn)|
i

+ krk1E
h
|J

AM
n+1

(Xn+1)� Vn+1(Xn+1)|
i
,

which holds for all A 2 AM , so that:

E
h
J
AM
n (Xn)� Vn(Xn)

i

�
[f ]L + kVn+1k1[r]L

�
inf

A2AM

E
h
|a

opt

n (Xn)�A(Xn)|
i

+ krk1E
h
|J

AM
n+1

(Xn+1)� Vn+1(Xn+1)|
i
.

(A.5) then follows directly by induction. 2

A.3 Proof of Lemma 4.1

The proof is divided into four steps.

Step 1: Symmetrization by a ghost sample. We take " > 0 and show that for

M > 2

�
(N�n)kfk1+kgk1

�2
"2

, it holds:

P
"

sup
A2AM

�����
1

M

MX

m=1

h
f(X(m)

n , A(X(m)

n )) + Ŷ
(m),A

n+1

i
� E

h
J
A,(â

M
k )

N�1
k=n+1

n (Xn)
i����� > "

#

 2P
"

sup
A2AM

�����
1

M

MX

m=1

h
f(X(m)

n , A(X(m)

n )) + Ŷ
(m),A

n+1
� f(X

0
(m)

n , A(X
0
(m)

n ))� Ŷ
0 (m),A

n+1

i����� >
"

2

#
,

(A.7)
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where:

• (X
0
(m)

k
)1mM,nkN is a copy of (X(m)

k
)1mM,nkN generated from an indepen-

dent copy of the exogenous noises ("0(m)

k
)1mM,nkN , and independent copy of ini-

tial positions (X
0
(m)

n )1mM , following the same control âM
k

at time k= n+1, . . . , N�

1, and control A at time n,

• We remind that Y (m),A

n+1
has already been defined in (4.5), and we similarly define

Y
0 (m),A

n+1
:=

N�1X

k=n+1

f(X 0 (m),A

k
, â

M

k (X 0 (m),A

k
)) + g(X 0 (m),A

N
).

Let A⇤
2 AM be such that:
�����
1

M

MX

m=1

h
f(X(m)

n , A
⇤(X(m)

n )) + Ŷ
(m),A

⇤

n+1

i
� E

h
J
A

⇤
,(â

M
k )

N�1
k=n+1

n (Xn)
i����� > "

if such a function exists, and an arbitrary function in AM if such a function does not ex-

ist. Note that 1

M

P
M

m=1

h
f(X(m)

n , A
⇤(X(m)

n )) + Ŷ
(m),A

⇤

n+1

i
� E

h
J
A

⇤
,(â

M
k )

N�1
k=n+1

n (Xn)
i
is a r.v.,

which implies that A
⇤ also depends on ! 2 ⌦. Denote by PM the probability condi-

tioned by the training set of exogenous noises ("(m)

k
)1mM,nkN and initial positions

(X(m)

k
)1mM,nkN , and recall that EM stands for the expectation conditioned by the

latter. Application of Chebyshev’s inequality yields

PM

" �����EM

h
J
A

⇤
,(â

M
k )

N�1
k=n+1

n (X 0
n)
i
�

1

M

MX

m=1

h
f(X 0(m)

n , A
⇤(X 0(m)

n )) + Ŷ
0 (m),A

⇤

n+1
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"

2
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VarM
h
J
A

⇤
,(â

M
k )

N�1
k=n+1

n (X 0
n)
i

M("/2)2



�
(N � n)kfk1 + kgk1

�
2

M"2
,

where we have used 0 
���J

A
⇤
,(â

M
k )

N�1
k=n+1

n (X 0
n)
���  (N � n)kfk1 + kgk1 which implies

VarM


J
A

⇤
,(â

M
k )

N�1
k=n+1

n (X 0
n)

�
= VarM


J
A

⇤
,(â

M
k )

N�1
k=n+1

n (X 0
n)�

(N � n)kfk1 + kgk1
2

�

 E
"✓

J
A

⇤
,(â

M
k )

N�1
k=n+1

n (X 0
n)�

(N � n)kfk1 + kgk1
2

◆
2
#



�
(N � n)kfk1 + kgk1

�
2

4
.

Thus, for M > 2

�
(N�n)kfk1+kgk1

�2
"2

, we have

PM

" �����EM

h
J
A

⇤
,(â

M
k )

N�1
k=n+1

n (Xn)
i
�

1

M

MX

m=1
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f(X 0(m)

n , A
⇤(X 0(m)

n )) + Ŷ
0 (m),A

⇤
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i����� 
"

2
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2
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(A.8)
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Hence:

P
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�����
1

M

MX

m=1

h
f(X(m)
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⇤
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i
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h
J
A

⇤
,(â
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Observe that 1

M

P
M

m=1

h
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⇤

n+1

i
�EM

h
J
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⇤
,(â

M
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N�1
k=n+1

n (Xn)
i
is measur-

able w.r.t. the �-algebra generated by the training set, so that conditioning by the training

set and injecting (A.8) yields

P
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MX
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,

for M > 2

�
(N�n)kfk1+kgk1

�2
"2

, where we use the definition of A⇤ to go from the second-to-

last to the last line. The proof of (A.7) is then completed.

Step 2: We show that

E
"

sup
A2AM

�����
1

M

MX

m=1

h
f(X(m)

n , A(X(m)

n )) + Ŷ
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Indeed, let M 0 =
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The second term in the r.h.s. of (A.10) comes from (A.7). It remains to write the latter as

an expectation to obtain (A.9).

Step 3: Introduction of additional randomness by random signs.

Let (rm)1mM be i.i.d. Rademacher r.v.e. We show that:
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Since for each m = 1, ...,M the set of exogenous noises ("0(m)

k
)nkN and ("(m)

k
)nkN are

i.i.d., their joint distribution remain the same if one randomly interchanges the correspon-

e
The probability mass function of a Rademacher r.v. is by definition

1
2��1 +

1
2�1.
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ding components. Thus, it holds for " � 0:
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It remains to integrate on R+ w.r.t. " to get (A.11).

Step 4: We show that
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Adding and removing the cost obtained by control 0 at time n yields:

E
"

sup
A2AM

�����
1

M

MX

m=1

rm

⇣
f(X(m)

n , A(X(m)

n )) + Ŷ
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(m),0

n+1

⌘����

#

+ E
"

sup
A2AM

�����
1

M

MX

m=1

rm

⇣
f(X(m)

n , A(X(m)

n ))� f(X(m)

n , 0) + Ŷ
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(m),0

n+1

⌘�����

#
.

(A.13)

We now bound the first term of the r.h.s. of (A.13). By Cauchy-Schwartz inequality, and

recalling that (rm)1mM are i.i.d. with zero mean such that r2m = 1, we get
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Turn now to the second term of (A.13). By the Lipschitz continuity of f , it stands:
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where we condition by the exogenous noise, use assumption (HF-PI) and the ⌘M�M -

Lipschitz continuity of the estimated optimal controls at time k, for k = n+ 1, . . . , N � 1.

Now, notice first that
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and moreover:
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where R > 0 is a bound for the state space (see e.g. the discussion on the Frank-Wolfe step

p.10 of [1] for a proof of this inequality), which implies by Cauchy-Schwarz inequality:
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since the (rm)m are i.i.d. Rademacher r.v. Plug first (A.16) and (A.17) into (A.15) to

obtain
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Plug then (A.14) and (A.18) into (A.13) to get (A.12).

Step 5: Conclusion

Plug (A.12) into (A.11) and combine it with (A.9) to obtain the bound on the estimation

error, as stated in (4.10) of Lemma 4.1. 2

A.4 Proof of Lemma 4.2

Let (âM
k
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be the sequence of estimated controls at time k = n + 1, ..., N � 1. Take

A 2 AM and remind that we denote by J
A,(â)
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n the cost functional associated to the

control A at time n, and â
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k
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solution of the Bellman equation

8
><

>:

J
A,(â)
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where EA
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N�1
k=n+1

n (Xn)

�
� inf

A2AX
EM


J
A,(â)
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N�1
k=n+1

n (Xn)

�

 inf
A2AM

EM


J
A,(â)
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where the last inequality stands because the value function is smaller than the cost func-

tional associated to any other strategy. We then apply the dynamic programming principle

to obtain:
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To bound the r.h.s. of (A.20), first observe that for A 2 AM :
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(â)

N�1
k=n+1

n+1
(Xn+1)� Ea

opt

n Vn+1(Xn+1)
i


�
[f ]L + kVn+1k1[r]L

�
E
⇥
|A(Xn)� a

opt

n (Xn)|
⇤
+ krk1EM

h
J
(â)
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where we used twice assumption (Hd) at the second-last line of (A.21). Inject inequality
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Plugging (A.22) into (A.20) yields
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which implies by induction, as M ! +1:
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We now use Lemma 4.1 to bound the expectations of the "
esti

PI,k
for k = n + 1, . . . , N � 1,

and plug the result into (A.19) to complete the proof of Lemma 4.2. 2

A.5 Function approximation by neural networks

We assume a
opt
n (Xn) 2 L2(µ), and show the relation (4.8) in Proposition 4.1.

The universal approximator theorem applies for
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Also, notice that
�
AM

�
M�1

is increasing, which implies that A1 = limM!+1AM , and

gives the existence of M > 0, that depends on ", such that a⇤ 2 AM .
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which is the required result stated in (4.8). 2

We now show (4.9) of proposition 4.1:

As stated in section 4.7 of [1]: proposition 6 in [1] shows that we can approximate a c-
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2

A.6 Proof of Lemma 4.3

We prove Lemma 4.3 in four steps. Since the proof is very similar to the one of Lemma

4.1, we only detail the arguments that are modified.

Step 1: Symmetrization by a ghost sample. We take " > 0 and show that for M >
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where:

•
�
X

0(m)

n

�M
m=1

is a i.i.d. copy of
�
X

(m)

n

�M
m=1

,

•
�
"
0m
n+1

�M
m=1

is a i.i.d. copy of
�
"
m
n+1

�M
m=1

,

• we define

Ŷ
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Proof: Since V̂ M
n the estimated value function at time n, for n=0, ..., N �1, is bounded by

construction (we truncated the estimation at the last step of the pseudo-code of the Hybrid

algorithm), the proof is the same as the one in step 1 of Lemma 4.1. 2
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Step 2: The following result holds
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Proof: same as step 2 in the proof of Lemma 4.1. 2

Step 3: Introduction of additional randomness by random signs.

The following result holds:
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Proof: same as step 3 in the proof of Lemma 4.1. 2

Step 4: We show that
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(A.27)

Adding and removing the cost obtained by control 0 at time n yields:
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(A.28)

The first term in the r.h.s. in (A.28) is bounded as in the proof of Lemma 4.1 by

(N � n)kfk1 + kgk1
p
M

.
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We use the Lipschitz-continuity of f as follows, to bound its second term:
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where we condition by the exogenous noise, use assumption (HF), and the ⌘M�M -Lipschitz

continuity of the estimated value fonction at time n+ 1.

By using the same arguments as those presented in the proof of Lemma 4.1, we can first

bound E

supA2AM

���
P

M

m=1
rmA(X(m)

n )
���
�
as follows:
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and then conclude that (A.27) holds.

Step 5: Conclusion

Combining(A.25),(A.26) and (A.27) results in the bound on the estimation error as stated

in (4.23). 2

A.7 Proof of Lemma 4.4

We divide the proof of Lemma 4.4 into two steps.

First write
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Step 1: We show
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(A.31)

Take A 2 AM , and apply the dynamic programming principle to write
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where we used (Hd) at the second-to-last line. By using one more time assumption (Hd),

we then get:
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, with Xn+1 ⇠ µ,

which is the result stated in (A.31).

Step 2: We show
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which completes the proof of (A.32).

Step 3 Conclusion:

We complete the proof of Lemma 4.4 by plugging (A.31) and (A.32) into (A.30). 2

A.8 Some useful Lemmas for the proof of Theorem 4.2

Fix M 2 N⇤, let x1, . . . , xM 2 Rd, and set xM = (x1, . . . , xM ). Define the distance d2(f, g)

between f : Rd
! R and g : Rd

! R by

d2(f, g) =

 
1

M

MX

m=1

|f(xm)� g(xm)|2
!1/2

.

An "-cover of V (w.r.t. the distance d2) is a set of functions f1, . . . , fP : Rd
! R such that

min
p=1,...,P

d2 (f, fp) < ", for f 2 V.

Let N2(",V, xM ) denote the size of the smallest "-cover of V w.r.t. the distance d2, and

set N2(",V, xM ) =1 if there does not exist any "-cover of V of finite size. N2(",V, xM ) is

called  L2-"-covering number of V on x
M .

50



Lemma A.1 Let (X,Y ) be a random variable. Assume |Y |  L a.s. and let

m(x) = E[Y |X = x].

Assume Y �m(X) is sub-Gaussian in the sense that
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(A.33)

for all � � �M and all g 2 VM [ {m} we have as M ! +1:
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Lemma A.2 Let VM be defined as in Section 4.2. For any " > 0, we have
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