An Exterior Differential Calculus Approach to Jacques Lacan

Conference in Honor of Jean Michel Lasry's 70th Birthday

Pierre-André Chiappori

Columbia University

Paris, June 2018

• The mathematician ...

- The mathematician ...
- ... interested in psychoanalysis ...

- The mathematician ...
- ... interested in psychoanalysis ...
- ... the innovator ...

- The mathematician ...
- ... interested in psychoanalysis ...
- ... the innovator ...
- ... the startupper, etc.

- The mathematician ...
- ... interested in psychoanalysis ...
- ... the innovator ...
- ... the startupper, etc.
- And, last but not least, the wise man

• Initial question: how many people in a household?

- Initial question: how many people in a household?
- Standard response (by economists): ONE
 - \rightarrow household represented by one utility function

- Initial question: how many people in a household?
- Standard response (by economists): ONE
 → household represented by one utility function
- Advantages: testability, identifiability from observable behavior
 → demand function x (p, y) solves

$$V\left(p,y
ight) =\max_{x}U\left(x
ight)$$
 s.t. $p^{\prime}x=y$

Normalize $y = 1 \rightarrow$ envelope: x(p) proportional to a gradient

$$D_{p}V = -\lambda(p) x(p) \Rightarrow D_{p}x(p) = \frac{1}{\lambda(p)} \left(x(D_{p}\lambda)' - D_{p}^{2}V \right)$$

where $D_p^2 V$ is symmetric, positive ('Slutsky relationship')

- Initial question: how many people in a household?
- Standard response (by economists): ONE
 → household represented by one utility function
- Advantages: testability, identifiability from observable behavior
 → demand function x (p, y) solves

$$V\left(p,y
ight) =\max_{x}U\left(x
ight)$$
 s.t. $p^{\prime}x=y$

Normalize $y = 1 \rightarrow$ envelope: x(p) proportional to a gradient

$$D_{p}V = -\lambda(p) \times (p) \Rightarrow D_{p} \times (p) = \frac{1}{\lambda(p)} \left(\times (D_{p}\lambda)' - D_{p}^{2}V \right)$$

where $D_p^2 V$ is symmetric, positive ('Slutsky relationship') • Identifiability: V determined up to an increasing transform

- Initial question: how many people in a household?
- Standard response (by economists): ONE
 → household represented by one utility function
- Advantages: testability, identifiability from observable behavior
 → demand function x (p, y) solves

$$V\left(p,y
ight) =\max_{x}U\left(x
ight)$$
 s.t. $p^{\prime}x=y$

Normalize $y = 1 \rightarrow$ envelope: x(p) proportional to a gradient

$$D_{p}V = -\lambda(p) x(p) \Rightarrow D_{p}x(p) = \frac{1}{\lambda(p)} \left(x(D_{p}\lambda)' - D_{p}^{2}V \right)$$

where $D_p^2 V$ is symmetric, positive ('Slutsky relationship')

- \bullet Identifiability: V determined up to an increasing transform
- But: there are two people in a couple!!!

Chiappori (Columbia University)

• Two basic assumptions:

3

- Two basic assumptions:
 - 2 utility functions U_a , U_b

- Two basic assumptions:
 - 2 utility functions U_a , U_b
 - Pareto efficiency: no alternative decision would be unanimously prefered

- Two basic assumptions:
 - 2 utility functions U_a , U_b
 - Pareto efficiency: no alternative decision would be unanimously prefered
- Representation: demand solves

$$\max_{x} U_{a}\left(x
ight)$$
 under $p'x \leq 1$ and $U_{b}\left(x
ight) = ar{u}_{b}$

- Two basic assumptions:
 - 2 utility functions U_a , U_b
 - Pareto efficiency: no alternative decision would be unanimously prefered
- Representation: demand solves

$$\max_{x} U_{a}\left(x
ight)$$
 under $p'x \leq 1$ and $U_{b}\left(x
ight) = ar{u}_{b}$

Equivalent to

$$\max_{x} U_{a}(x) + \mu(p) U_{b}(x) \quad \text{under } p'x \leq 1$$

- Two basic assumptions:
 - 2 utility functions U_a , U_b
 - Pareto efficiency: no alternative decision would be unanimously prefered
- Representation: demand solves

$$\max_{x} U_{a}\left(x
ight)$$
 under $p'x\leq1$ and $U_{b}\left(x
ight)=ar{u}_{b}$

Equivalent to

$$\max_{x} U_{a}\left(x\right) + \mu\left(p\right) U_{b}\left(x\right) \quad \text{under } p'x \leq 1$$

Generalization:

$$\max_{x}\sum_{m=1}^{k}\mu_{m}\left(p\right)U_{m}\left(x\right) \text{ under } p'x\leq1$$

- Two basic assumptions:
 - 2 utility functions U_a , U_b
 - Pareto efficiency: no alternative decision would be unanimously prefered
- Representation: demand solves

$$\max_{x} U_{a}\left(x
ight)$$
 under $p'x\leq 1$ and $U_{b}\left(x
ight)=ar{u}_{b}$

Equivalent to

$$\max_{x} U_{a}\left(x\right) + \mu\left(p\right) U_{b}\left(x\right) \quad \text{under } p'x \leq 1$$

Generalization:

$$\max_{x} \sum_{m=1}^{k} \mu_{m}\left(p\right) U_{m}\left(x\right) \quad \text{under } p'x \leq 1$$

• Testability: what does it imply for the demand function?

• Particular case: all goods are privately consumed $\rightarrow x^i = x^i_a + x^i_b$

The collective model (cont.)

- Particular case: all goods are privately consumed $\rightarrow x^i = x^i_a + x^i_b$
- **Theorem:** Efficiency equivalent to $\exists (\rho_a(p), \rho_b(p))$ ('sharing rule), with $\rho_a + \rho_b = 1$, s.t. x_m solves

$$V_{m}\left(p
ight)=\max_{x}U_{m}\left(x
ight)$$
 s.t. $p'x=
ho_{m}\left(p
ight)$, $m=$ a, b

The collective model (cont.)

- Particular case: all goods are privately consumed $\rightarrow x^i = x^i_a + x^i_b$
- **Theorem:** Efficiency equivalent to $\exists (\rho_a(p), \rho_b(p))$ ('sharing rule), with $\rho_a + \rho_b = 1$, s.t. x_m solves

$$V_{m}\left(p
ight)=\max_{x}U_{m}\left(x
ight)$$
 s.t. $p'x=
ho_{m}\left(p
ight)$, $m=$ a, b

Therefore

$$\frac{1}{\lambda_{m}}D_{p}V_{m} = -x_{m}\left(p\right) + D_{p}\rho_{m} \Rightarrow x\left(p\right) = \sum_{m}x_{m}\left(p\right) = -\sum_{m}\frac{1}{\lambda_{m}}D_{p}V_{m}$$

and x(p) is a linear combination of the gradients of increasing, concave functions

When can a given vector field in \mathbb{R}^n be written as a linear combination of k gradients of increasing, concave functions ???

 \rightarrow Jean-Michel's words of wisdom (part 1):

• Basic intuition: define the differential one-form

$$\omega\left(\mathbf{p}
ight)=\sum\mathbf{x}^{j}\left(\mathbf{p}
ight)\mathbf{d}\mathbf{p}_{j}.$$

• Basic intuition: define the differential one-form

$$\omega\left(\mathbf{p}
ight)=\sum\mathbf{x}^{j}\left(\mathbf{p}
ight)d\mathbf{p}_{j}.$$

• Taking the exterior differential yields:

$$egin{aligned} d\omega &= \sum \left(rac{\partial x^{i}}{\partial p_{i}} - rac{\partial x^{i}}{\partial p_{j}}
ight) \, dp_{i} \wedge dp_{j} \end{aligned}$$

• Basic intuition: define the differential one-form

$$\omega\left(\mathbf{p}
ight)=\sum\mathbf{x}^{j}\left(\mathbf{p}
ight)d\mathbf{p}_{j}.$$

• Taking the exterior differential yields:

$$egin{aligned} d\omega &= \sum \left(rac{\partial x^j}{\partial
ho_i} - rac{\partial x^i}{\partial
ho_j}
ight) \, dp_i \wedge dp_j \end{aligned}$$

• Then (by extensions of the Cartan-Kähler theorem):

• Basic intuition: define the differential one-form

$$\omega\left(\mathbf{p}
ight)=\sum\mathbf{x}^{j}\left(\mathbf{p}
ight)d\mathbf{p}_{j}.$$

• Taking the exterior differential yields:

$$d\omega = \sum \left(rac{\partial x^j}{\partial p_i} - rac{\partial x^i}{\partial p_j}
ight) \, dp_i \wedge dp_j$$

• Then (by extensions of the Cartan-Kähler theorem):

• proportional to one gradient:

$$\omega \wedge d\omega = 0$$

• Basic intuition: define the differential one-form

$$\omega\left(\mathbf{p}
ight)=\sum\mathbf{x}^{j}\left(\mathbf{p}
ight)d\mathbf{p}_{j}.$$

• Taking the exterior differential yields:

$$egin{aligned} d\omega &= \sum \left(rac{\partial x^j}{\partial oldsymbol{
ho}_i} - rac{\partial x^i}{\partial oldsymbol{
ho}_j}
ight) \, doldsymbol{p}_i \wedge doldsymbol{
ho}_j \end{aligned}$$

• Then (by extensions of the Cartan-Kähler theorem):

• proportional to one gradient:

$$\omega \wedge d\omega = 0$$

• linear combination of two gradients:

$$\omega \wedge d\omega \wedge d\omega = 0$$
, etc.

• Basic intuition: define the differential one-form

$$\omega\left(\mathbf{p}
ight)=\sum\mathbf{x}^{j}\left(\mathbf{p}
ight)d\mathbf{p}_{j}.$$

• Taking the exterior differential yields:

$$d\omega = \sum \left(rac{\partial x^{j}}{\partial
ho_{i}} - rac{\partial x^{i}}{\partial
ho_{j}}
ight) \, d
ho_{i} \wedge d
ho_{j}$$

• Then (by extensions of the Cartan-Kähler theorem):

• proportional to one gradient:

$$\omega \wedge d\omega = 0$$

• linear combination of two gradients:

$$\omega \wedge d\omega \wedge d\omega = 0$$
, etc.

• Additional conditions reflecting concavity; sufficient!

• Empirical test:

- Empirical test:
 - Compute the Slutsky matrix

$$S = D_p x \left(Id - px' \right)$$

- Empirical test:
 - Compute the Slutsky matrix

$$S = D_p x \left(Id - px' \right)$$

• Unitary: S is symmetric, negative

- Empirical test:
 - Compute the Slutsky matrix

$$S = D_p x \left(Id - px' \right)$$

- Unitary: S is symmetric, negative
- Collective, 2 agents:

 $S = \Sigma + R$

where S is symmetric, negative and $rk(R) \leq 1$

- Empirical test:
 - Compute the Slutsky matrix

$$S = D_p x \left(Id - px' \right)$$

- Unitary: S is symmetric, negative
- Collective, 2 agents:

$$S = \Sigma + R$$

where S is symmetric, negative and $rk(R) \leq 1$

• Collective, k agents:

$$S = \Sigma + R$$

where S is symmetric, negative and $rk(R) \leq k$

- Empirical test:
 - Compute the Slutsky matrix

$$S = D_p x \left(Id - px' \right)$$

- Unitary: S is symmetric, negative
- Collective, 2 agents:

$$S = \Sigma + R$$

where S is symmetric, negative and $rk(R) \leq 1$

• Collective, k agents:

$$S = \Sigma + R$$

where S is symmetric, negative and $\mathit{rk}\left(R
ight) \leq \mathit{k}$

• In particular, one can *empirically test for the number of decision makers*

- Empirical test:
 - Compute the Slutsky matrix

$$S = D_p x \left(Id - px' \right)$$

- Unitary: S is symmetric, negative
- Collective, 2 agents:

$$S = \Sigma + R$$

where S is symmetric, negative and $rk(R) \leq 1$

• Collective, k agents:

$$S = \Sigma + R$$

where S is symmetric, negative and $\mathit{rk}\left(R
ight) \leq \mathit{k}$

- In particular, one can *empirically test for the number of decision makers*
- Application (Browning Chiappori 1998):

- Empirical test:
 - Compute the Slutsky matrix

$$S = D_p x \left(Id - px' \right)$$

- Unitary: S is symmetric, negative
- Collective, 2 agents:

$$S = \Sigma + R$$

where S is symmetric, negative and $rk(R) \leq 1$

• Collective, k agents:

$$S = \Sigma + R$$

where S is symmetric, negative and $\mathit{rk}\left(R
ight) \leq \mathit{k}$

- In particular, one can *empirically test for the number of decision makers*
- Application (Browning Chiappori 1998):
 - Slutsky symmetry (strongly) rejected for couples, not for singles
The collective model and EDC ('Talk to lvar')

- Empirical test:
 - Compute the Slutsky matrix

$$S = D_p x \left(Id - px' \right)$$

- Unitary: S is symmetric, negative
- Collective, 2 agents:

$$S = \Sigma + R$$

where S is symmetric, negative and $rk(R) \leq 1$

• Collective, k agents:

$$S = \Sigma + R$$

where S is symmetric, negative and $\mathit{rk}\left(R
ight) \leq \mathit{k}$

- In particular, one can *empirically test for the number of decision makers*
- Application (Browning Chiappori 1998):
 - Slutsky symmetry (strongly) rejected for couples, not for singles
 - SNR1 not rejected for couples

• Finite, discrete data: (x_t, p^t, y^t) , t = 1, ..., T

- Finite, discrete data: (x_t, p^t, y^t) , t = 1, ..., T
- Definitions:

э

- Finite, discrete data: (x_t, p^t, y^t) , t = 1, ..., T
- Definitions:
 - x_t is Directly Revealed Prefered (DRP) to x_s iff $p^{t\prime}x_s \leq y^t$

- Finite, discrete data: (x_t, p^t, y^t) , t = 1, ..., T
- Definitions:
 - x_t is Directly Revealed Prefered (DRP) to x_s iff $p^{t\prime}x_s \leq y^t$
 - x_t is Revealed Prefered (RP) to x_s if there exists a sequence $x_{t_0} = x_t, x_{t_1}, ..., x_{t_k} = x_s$ such that

$$\left(x_{t_{l}}
ight)$$
 DRP $\left(x_{t_{l+1}}
ight)$, $l=$ 0, ..., $k-1$

• Two basic axiom:

Weak Axiom of RP (WARP): if x_t DRP x_s then $p^{s'}x_t > y^s$ Strong Axiom of RP (SARP): if x_t RP x_s then $p^{s'}x_t > y^s$

• Two basic axiom:

Weak Axiom of RP (WARP): if x_t DRP x_s then $p^{s'}x_t > y^s$ Strong Axiom of RP (SARP): if x_t RP x_s then $p^{s'}x_t > y^s$

Standard result (Kihlstrom Mas Colell Sonnenschein): consider a smooth demand function x (p, y), take any finite subsample (p^t, y^t; x (p^t, y^t)), t = 1, ..., T. Then WARP for all such finite subsample ⇐⇒ Slutsky negativeness SARP for all such finite subsample ⇐⇒ Slutsky negativeness + symmetry

• Two basic axiom:

Weak Axiom of RP (WARP): if x_t DRP x_s then $p^{s'}x_t > y^s$ Strong Axiom of RP (SARP): if x_t RP x_s then $p^{s'}x_t > y^s$

- Standard result (Kihlstrom Mas Colell Sonnenschein): consider a smooth demand function x (p, y), take any finite subsample (p^t, y^t; x (p^t, y^t)), t = 1, ..., T. Then WARP for all such finite subsample ⇐⇒ Slutsky negativeness SARP for all such finite subsample ⇐⇒ Slutsky negativeness + symmetry
- Extension to the collective model: Cherchye, De Rock, Vermeulen (2007)

• Two basic axiom:

Weak Axiom of RP (WARP): if x_t DRP x_s then $p^{s'}x_t > y^s$ Strong Axiom of RP (SARP): if x_t RP x_s then $p^{s'}x_t > y^s$

- Standard result (Kihlstrom Mas Colell Sonnenschein): consider a smooth demand function x (p, y), take any finite subsample (p^t, y^t; x (p^t, y^t)), t = 1, ..., T. Then WARP for all such finite subsample ⇐⇒ Slutsky negativeness SARP for all such finite subsample ⇐⇒ Slutsky negativeness + symmetry
- Extension to the collective model: Cherchye, De Rock, Vermeulen (2007)
 - Testable conditions for the collective model

• Two basic axiom:

Weak Axiom of RP (WARP): if x_t DRP x_s then $p^{s'}x_t > y^s$ Strong Axiom of RP (SARP): if x_t RP x_s then $p^{s'}x_t > y^s$

- Standard result (Kihlstrom Mas Colell Sonnenschein): consider a smooth demand function x (p, y), take any finite subsample (p^t, y^t; x (p^t, y^t)), t = 1, ..., T. Then WARP for all such finite subsample ⇐⇒ Slutsky negativeness SARP for all such finite subsample ⇐⇒ Slutsky negativeness + symmetry
- Extension to the collective model: Cherchye, De Rock, Vermeulen (2007)
 - Testable conditions for the collective model
 - ... that depend on the number of decision makers (nested)

The collective model and Jacques Lacan

 \rightarrow Jean-Michel's words of wisdom (part 2):

'Why do you expect an individual to be represented by a single utility?'

 \rightarrow Jean Michel's exact words:

'What about le Grand Autre' ??

Chiappori (Columbia University)

EDC Approach to Lacan

- Basic idea: several selves coexist within one decision maker
 - patient self vs immediate reward self

- Basic idea: several selves coexist within one decision maker
 - patient self vs immediate reward self
 - instinctive self vs rational self, ...

- patient self vs immediate reward self
- instinctive self vs rational self, ...
- Example: healthy vs unhealthy food

- patient self vs immediate reward self
- instinctive self vs rational self, ...
- Example: healthy vs unhealthy food
 - $\bullet \ \rightarrow \ \text{`healthy self' vs `immediate gratification self'}$

- patient self vs immediate reward self
- instinctive self vs rational self, ...
- Example: healthy vs unhealthy food
 - $\bullet \ \rightarrow \ \text{`healthy self' vs `immediate gratification self'}$
- Recent paper: Cherchye, De Rock, Griffith, O'Connell, Smith, Vermeulen:

'A new year, a new you? A two-selves model of within-person variation in food purchases' (2018)

• 3645 British singles drawn from the Kantar Worldpanel

э

- 3645 British singles drawn from the Kantar Worldpanel
- All grocery purchases at the transaction level; exact prices, quantities and nutritional characteristics; food and non-alcoholic drinks

- 3645 British singles drawn from the Kantar Worldpanel
- All grocery purchases at the transaction level; exact prices, quantities and nutritional characteristics; food and non-alcoholic drinks
- Observed between 24 months and 84 months during 2005-2011; aggregated at monthly level to reduce impact of "planned" deviations (celebrations,...)

- 3645 British singles drawn from the Kantar Worldpanel
- All grocery purchases at the transaction level; exact prices, quantities and nutritional characteristics; food and non-alcoholic drinks
- Observed between 24 months and 84 months during 2005-2011; aggregated at monthly level to reduce impact of "planned" deviations (celebrations,...)
- Aggregate the 113025 products into 85 products, based on their nutritional characteristics; construct corresponding price indices

- 3645 British singles drawn from the Kantar Worldpanel
- All grocery purchases at the transaction level; exact prices, quantities and nutritional characteristics; food and non-alcoholic drinks
- Observed between 24 months and 84 months during 2005-2011; aggregated at monthly level to reduce impact of "planned" deviations (celebrations,...)
- Aggregate the 113025 products into 85 products, based on their nutritional characteristics; construct corresponding price indices
- Classification of goods based on the Nutrient Profile Score (NPS) used by the government to classify goods

- 3645 British singles drawn from the Kantar Worldpanel
- All grocery purchases at the transaction level; exact prices, quantities and nutritional characteristics; food and non-alcoholic drinks
- Observed between 24 months and 84 months during 2005-2011; aggregated at monthly level to reduce impact of "planned" deviations (celebrations,...)
- Aggregate the 113025 products into 85 products, based on their nutritional characteristics; construct corresponding price indices
- Classification of goods based on the Nutrient Profile Score (NPS) used by the government to classify goods
 - 34 goods with NPS < 0 are labeled healthy

- 3645 British singles drawn from the Kantar Worldpanel
- All grocery purchases at the transaction level; exact prices, quantities and nutritional characteristics; food and non-alcoholic drinks
- Observed between 24 months and 84 months during 2005-2011; aggregated at monthly level to reduce impact of "planned" deviations (celebrations,...)
- Aggregate the 113025 products into 85 products, based on their nutritional characteristics; construct corresponding price indices
- Classification of goods based on the Nutrient Profile Score (NPS) used by the government to classify goods
 - 34 goods with NPS < 0 are labeled healthy
 - 24 goods with an NPS >10 (or 1 for drinks) are unhealthy

- 3645 British singles drawn from the Kantar Worldpanel
- All grocery purchases at the transaction level; exact prices, quantities and nutritional characteristics; food and non-alcoholic drinks
- Observed between 24 months and 84 months during 2005-2011; aggregated at monthly level to reduce impact of "planned" deviations (celebrations,...)
- Aggregate the 113025 products into 85 products, based on their nutritional characteristics; construct corresponding price indices
- Classification of goods based on the Nutrient Profile Score (NPS) used by the government to classify goods
 - 34 goods with NPS < 0 are labeled healthy
 - $\bullet~$ 24 goods with an NPS $>\!10$ (or 1 for drinks) are unhealthy
 - The nature of the remaining 27 goods is individual specific \rightarrow allows for a different perception across individuals

3

∃ → (∃ →

Image: A matrix and a matrix

Typical consumption pattern

Chiappori (Columbia University)

Paris, June 2018 14 / 22

Striking within person variation: individual pattern

Paris, June 2018 15 / 22

• Preferences: differences in the mean share of calories

- Preferences: differences in the mean share of calories
 - 10% of the individuals get more than 20% of their calories from added sugar

- Preferences: differences in the mean share of calories
 - 10% of the individuals get more than 20% of their calories from added sugar
 - 10% of the individuals get less than 5 % of their calories from added sugar

- Preferences: differences in the mean share of calories
 - 10% of the individuals get more than 20% of their calories from added sugar
 - 10% of the individuals get less than 5 % of their calories from added sugar
- Fluctuation: difference in the standard deviation of the share
 → Average 3.5 percentage points

- Preferences: differences in the mean share of calories
 - 10% of the individuals get more than 20% of their calories from added sugar
 - 10% of the individuals get less than 5 % of their calories from added sugar
- Fluctuation: difference in the standard deviation of the share
 → Average 3.5 percentage points
- Deterioration throughout the year: Q1-Q4 ratio
 → For 70% of the individuals the share increases

• Two selves for person i: healthy (U^{ih}) and unhealthy (U^{in})

- ∢ ⊢⊒ →

3

- Two selves for person *i*: healthy (U^{ih}) and unhealthy (U^{in})
- Decision process: Pareto-efficient bargaining betweem the two selves
 → solves

$$\max_{x} U^{ih}(x) + \mu_{it} U^{iu}(x) \quad \text{under}$$
$$p'_{it} x_{it} \le y_{it}$$

э

- Two selves for person *i*: healthy (U^{ih}) and unhealthy (U^{in})
- \bullet Decision process: Pareto-efficient bargaining betweem the two selves \rightarrow solves

$$\max_{x} U^{ih}(x) + \mu_{it} U^{iu}(x) \quad \text{under}$$
$$p'_{it} x_{it} \leq y_{it}$$

Note:

- Two selves for person i: healthy (U^{ih}) and unhealthy (U^{in})
- \bullet Decision process: Pareto-efficient bargaining betweem the two selves \rightarrow solves

$$\max_{x} U^{ih}(x) + \mu_{it} U^{iu}(x) \quad \text{under}$$

$$p'_{it} x_{it} \leq y_{it}$$

Note:

• time-varying impact over time of the unhealthy self
- Two selves for person i: healthy (U^{ih}) and unhealthy (U^{in})
- \bullet Decision process: Pareto-efficient bargaining betweem the two selves \rightarrow solves

$$\max_{x} U^{ih}(x) + \mu_{it} U^{iu}(x) \quad \text{under}$$
$$p'_{it} x_{it} \leq y_{it}$$

- Note:
 - time-varying impact over time of the unhealthy self
 - This is individual specific: a resolute individual will have less variation

- Two selves for person i: healthy (U^{ih}) and unhealthy (U^{in})
- \bullet Decision process: Pareto-efficient bargaining betweem the two selves \rightarrow solves

$$\max_{x} U^{ih}(x) + \mu_{it} U^{iu}(x) \quad \text{under}$$
$$p'_{it} x_{it} \leq y_{it}$$

Note:

- time-varying impact over time of the unhealthy self
- This is individual specific: a resolute individual will have less variation
- Therefore: can apply collective model to the data (both differentiable and RP)

• The RP approach: apply the RP conditions to the data, compare with the standard ('unitary') approach

- The RP approach: apply the RP conditions to the data, compare with the standard ('unitary') approach
- Performed *individual per individual*, using the panel structure of the data

- The RP approach: apply the RP conditions to the data, compare with the standard ('unitary') approach
- Performed *individual per individual*, using the panel structure of the data

• of the SARP (unitary model)

- The RP approach: apply the RP conditions to the data, compare with the standard ('unitary') approach
- Performed *individual per individual*, using the panel structure of the data

- of the SARP (unitary model)
- of the collective characterization

- The RP approach: apply the RP conditions to the data, compare with the standard ('unitary') approach
- Performed *individual per individual*, using the panel structure of the data

- of the SARP (unitary model)
- of the collective characterization
- Conclusion: the collective model fits data much better

- The RP approach: apply the RP conditions to the data, compare with the standard ('unitary') approach
- Performed *individual per individual*, using the panel structure of the data

- of the SARP (unitary model)
- of the collective characterization
- Conclusion: the collective model fits data much better
- In particular:

- The RP approach: apply the RP conditions to the data, compare with the standard ('unitary') approach
- Performed *individual per individual*, using the panel structure of the data

- of the SARP (unitary model)
- of the collective characterization
- Conclusion: the collective model fits data much better
- In particular:
 - Pass rate for the two-selves model is twice as high

- The RP approach: apply the RP conditions to the data, compare with the standard ('unitary') approach
- Performed *individual per individual*, using the panel structure of the data

- of the SARP (unitary model)
- of the collective characterization
- Conclusion: the collective model fits data much better
- In particular:
 - Pass rate for the two-selves model is twice as high
 - The distribution of the Afriat indices of the two selves model is statistically different, higher for the unitary for most individuals

• Differentiable approach: the sharing rule

- Differentiable approach: the sharing rule
- Regress the sharing rule

Regressors:	Mean	25th	50th	75th
Price	0.06	0.01	0.03	0.08
Budget	0.06	0.01	0.03	0.08
Price and budget	0.12	0.03	0.09	0.17
Advertising	0.05	0.01	0.02	0.07
Weather	0.10	0.04	0.07	0.13
Price, budget, advertising, weather	0.23	0.13	0.21	0.30

Two-self collective model (cont.)

Paris, June 2018 20 / 22

Two-self collective model: self-control

Chiappori (Columbia University)

Paris, June 2018 21 / 22

• Jean Michel's words of wisdom:

Image: A mathematical states and a mathem

2

• Jean Michel's words of wisdom:

• There should be more than 1 utility per individual

3

- There should be more than 1 utility per individual
- The collective model should help analyzing these effects

- There should be more than 1 utility per individual
- The collective model should help analyzing these effects
- These ideas have been taken seriously ...

- There should be more than 1 utility per individual
- The collective model should help analyzing these effects
- These ideas have been taken seriously ...
- ... have a direct interpretation in terms of self-control ...

- There should be more than 1 utility per individual
- The collective model should help analyzing these effects
- These ideas have been taken seriously ...
- ... have a direct interpretation in terms of self-control ...
- ... and are supported by the data!

Birthday

