On continuous time contract theory

Nizar Touzi

Ecole Polytechnique, France

Bon anniversaire Jean-Michel, June 27, 2018

Outline

- 1 The Principal-Agent problem
 - Formulation
 - Reduction to standard control problem

- Fully nonlinear representation in random horizon
 - Semimartingale measures on the canonical space
 - Random horizon 2nd order backward SDEs

 Principal delegates management of output process X, only observes X

• Agent devotes effort $a \Longrightarrow X^a$, chooses optimal effort by

$$V_A := \max_{\mathbf{a}} \mathbb{E} U_A (-c(\mathbf{a}))$$

- Principal delegates management of output process X, only observes X pays salary defined by contract $\xi(X)$
- Agent devotes effort $a \Longrightarrow X^a$, chooses optimal effort by

$$V_A(\xi) := \max_{\mathbf{a}} \mathbb{E} U_A(\xi(X^{\mathbf{a}}) - c(\mathbf{a})) \implies \hat{a}(\xi)$$

Principal chooses optimal contract by solving

$$\max_{\xi} \mathbb{E} U_P(X^{\hat{a}(\xi)} - \xi(X^{\hat{a}(\xi)}))$$
 under constraint $V_A(\xi) \ge \rho$

⇒ Non-zero sum Stackelberg game

- Principal delegates management of output process X, only observes X pays salary defined by contract $\xi(X)$
- Agent devotes effort $a \Longrightarrow X^a$, chooses optimal effort by

$$V_A(\xi) := \max_{\mathbf{a}} \mathbb{E} U_A(\xi(X^{\mathbf{a}}) - c(\mathbf{a})) \implies \hat{a}(\xi)$$

Principal chooses optimal contract by solving

$$\max_{\xi} \mathbb{E} U_P(X^{\hat{a}(\xi)} - \xi(X^{\hat{a}(\xi)}))$$
 under constraint $V_A(\xi) \ge \rho$

- Principal delegates management of output process X, only observes X pays salary defined by contract $\xi(X)$
- Agent devotes effort $a \Longrightarrow X^a$, chooses optimal effort by

$$V_A(\xi) := \max_{\mathbf{a}} \mathbb{E} \ U_A(\xi(X^{\mathbf{a}}) - c(\mathbf{a})) \implies \hat{a}(\xi)$$

Principal chooses optimal contract by solving

$$\max_{\xi} \mathbb{E} U_P(X^{\hat{a}(\xi)} - \xi(X^{\hat{a}(\xi)}))$$
 under constraint $V_A(\xi) \ge \rho$

⇒ Non-zero sum Stackelberg game

(Static) Principal-Agent Problem ==> Continuous time

- Principal delegates management of output process X, only observes X pays salary defined by contract $\xi(X)$
- Agent devotes effort $a \Longrightarrow X^a$, chooses optimal effort by

$$V_A(\xi) := \max_{\mathbf{a}} \mathbb{E} U_A(\xi(X^{\mathbf{a}}) - c(\mathbf{a})) \implies \hat{a}(\xi)$$

Principal chooses optimal contract by solving

$$\max_{\xi} \mathbb{E} U_P(X^{\hat{a}(\xi)} - \xi(X^{\hat{a}(\xi)}))$$
 under constraint $V_A(\xi) \ge \rho$

⇒ Non-zero sum Stackelberg game

Principal-Agent problem formulation

Agent problem:

$$V_0^A(\xi) \ := \ \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \Big[\xi(X) - \int_0^{\mathcal{T}} c_t(
u_t) dt \Big]$$

 $\mathbb{P} \in \mathcal{P}$: weak solution of Output process for some ν valued in U:

$$dX_t = b_t(X, \nu_t)dt + \sigma_t(X, \nu_t)dW_t^{\mathbb{P}} \mathbb{P} - a.s.$$

• Given solution $\mathbb{P}^*(\xi)$, Principal solves the optimization problem

$$V_0^P := \sup_{\xi \in \Xi_\rho} \mathbb{E}^{\mathbb{P}^*(\xi)} \Big[U \big(\ell(X) - \xi(X) \big) \Big]$$

where
$$\Xi_
ho$$
 := $\left\{ \xi(X_.): \ V_0^A(\xi) \geq
ho
ight\}$

Possible extensions: random (possibly ∞) horizon, heterogeneous agents with possibly mean field interaction, competing Brincipals.

Principal-Agent problem formulation

Agent problem:

$$V_0^A(\xi) \ := \ \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \Big[\xi(X) - \int_0^T c_t(
u_t) dt \Big]$$

 $\mathbb{P} \in \mathcal{P}$: weak solution of Output process for some ν valued in U:

$$dX_t = b_t(X, \nu_t)dt + \sigma_t(X, \nu_t)dW_t^{\mathbb{P}} \mathbb{P} - \text{a.s.}$$

• Given solution $\mathbb{P}^*(\xi)$, Principal solves the optimization problem

$$V_0^P := \sup_{\xi \in \Xi_{\rho}} \mathbb{E}^{\mathbb{P}^*(\xi)} \Big[U \big(\ell(X) - \xi(X) \big) \Big]$$

where
$$\Xi_{\rho} := \{ \xi(X) : V_0^A(\xi) \geq \rho \}$$

Possible extensions : random (possibly ∞) horizon, heterogeneous χ agents with possibly mean field interaction, competing Principals...

Principal-Agent problem formulation: non-degeneracy

Agent problem:

$$V_0^A(\xi) \ := \ \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \Big[\xi(X) - \int_0^T c_t(
u_t) dt \Big]$$

 $\mathbb{P} \in \mathcal{P}$: weak solution of Output process for some ν valued in U:

$$dX_t = \sigma_t(X, \beta_t) [\lambda_t(X, \alpha_t) dt + dW_t^{\mathbb{P}}] \mathbb{P} - \text{a.s.}$$

• Given solution $\mathbb{P}^*(\xi)$, Principal solves the optimization problem

$$V_0^P := \sup_{\xi \in \Xi_\rho} \mathbb{E}^{\mathbb{P}^*(\xi)} \Big[U \big(\ell(X) - \xi(X) \big) \Big]$$

where
$$\Xi_{
ho}:=\left\{ \xi(X_{\cdot}):\ V_{0}^{A}(\xi)\geq
ho
ight\}$$

Possible extensions: random (possibly ∞) horizon, heterogeneous agents with possibly mean field interaction, competing Principals...

GENERAL SOLUTION APPROACH

A subset of revealing contracts

• Path-dependent Hamiltonian for the Agent problem :

$$H_t(\omega, z, \gamma) := \sup_{\mathbf{u} \in \mathbf{U}} \left\{ b_t(\omega, \mathbf{u}) \cdot z + \frac{1}{2} \sigma_t \sigma_t^\top(\omega, \mathbf{u}) : \gamma - c_t(\omega, \mathbf{u}) \right\}$$

• For $Y_0 \in \mathbb{R}$, $Z, \Gamma \mathbb{F}^X$ — prog meas, define \mathbb{P} —a.s. for all $\mathbb{P} \in \mathcal{P}$

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2}\Gamma_s : d\langle X \rangle_s - H_s(X, Z_s, \Gamma_s) ds$$

Proposition $V_A(Y_T^{Z,\Gamma}) = Y_0$. Moreover \mathbb{P}^* is optimal iff

$$u_t^* = \underset{u \in U}{\operatorname{Argmax}} H_t(Z_t, \Gamma_t) = \hat{\nu}(Z_t, \Gamma_t)$$

A subset of revealing contracts

• Path-dependent Hamiltonian for the Agent problem :

$$H_t(\omega, z, \gamma) := \sup_{\mathbf{u} \in \mathbf{U}} \left\{ b_t(\omega, \mathbf{u}) \cdot z + \frac{1}{2} \sigma_t \sigma_t^\top(\omega, \mathbf{u}) : \gamma - c_t(\omega, \mathbf{u}) \right\}$$

• For $Y_0 \in \mathbb{R}$, $Z, \Gamma \mathbb{F}^X$ – prog meas, define \mathbb{P} –a.s. for all $\mathbb{P} \in \mathcal{P}$

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2}\Gamma_s : d\langle X \rangle_s - H_s(X, Z_s, \Gamma_s) ds$$

Proposition $V_A(Y_T^{Z,\Gamma}) = Y_0$. Moreover \mathbb{P}^* is optimal iff

$$u_t^* = \operatorname{Argmax}_{u \in U} H_t(Z_t, \Gamma_t) = \hat{\nu}(Z_t, \Gamma_t)$$

Principal problem restricted to revealing contracts

Dynamics of the pair (X, Y) under "optimal response"

$$dX_{t} = \underbrace{\nabla_{z} H_{t}(X, Y_{t}^{Z, \Gamma}, Z_{t}, \Gamma_{t})}_{b_{t}(X, \hat{\nu}(Y_{t}, Z_{t}, \Gamma_{t}))} dt + \underbrace{\left\{2\nabla_{\gamma} H_{t}(X, Y_{t}^{Z, \Gamma}, Z_{t}, \Gamma_{t})\right\}^{\frac{1}{2}}}_{\sigma_{t}(X, \hat{\nu}(Y_{t}, Z_{t}, \Gamma_{t}))} dW_{t}$$

$$dY_{t}^{Z, \Gamma} = Z_{t} \cdot dX_{t} + \frac{1}{2}\Gamma_{t} : d\langle X \rangle_{t} - H_{t}(X, Y_{t}^{Z, \Gamma}, Z_{t}, \Gamma_{t}) dt$$

⇒ Principal's value function under revealing contracts :

$$V_P \geq V_0(X_0,Y_0) := \sup_{(\mathcal{Z},\Gamma) \in \mathcal{V}} \mathbb{E}\Big[U\big(\ell(X) - Y_T^{\mathcal{Z},\Gamma}\big)\Big], \ \text{ for all } Y_0 \geq \rho$$

where
$$\mathcal{V}:=\left\{(Z,\Gamma):\ Z\in\mathbb{H}^2(\mathcal{P})\ \text{and}\ \ \mathcal{P}^*ig(Y^{Z,\Gamma}_Tig)
eq\emptyset
ight\}$$

Reduction to standard control problem

Theorem (Cvitanić, Possamaï & NT '15)

Assume $V \neq \emptyset$. Then

$$V_0^P = \sup_{Y_0 \ge \rho} V_0(X_0, Y_0)$$

Given maximizer Y_0^* , the corresponding optimal controls (Z^*, Γ^*) induce an optimal contract

$$\boldsymbol{\xi^{\star}} = \boldsymbol{Y_0^{\star}} + \int_0^T \boldsymbol{Z_t^{\star}} \cdot d\boldsymbol{X_t} + \frac{1}{2} \boldsymbol{\Gamma_t^{\star}} : d\langle \boldsymbol{X} \rangle_t - H_t(\boldsymbol{X}, \boldsymbol{Y_t^{Z^{\star}, \Gamma^{\star}}}, \boldsymbol{Z_t^{\star}}, \boldsymbol{\Gamma_t^{\star}}) dt$$

Recall the subclass of contracts

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2} \Gamma_s : d\langle X \rangle_s - H_s(X, Y_s^{Z,\Gamma}, Z_s, \Gamma_s) ds$$

$$\mathbb{P} - \text{a.s. for all } \mathbb{P} \in \mathcal{P}$$

To prove the main result, it suffices to prove the representation

for all
$$\xi \in ??$$
 $\exists (Y_0, Z, \Gamma)$ s.t. $\xi = Y_T^{Z, \Gamma}, \ \mathbb{P}$ — a.s. for all $\mathbb{P} \in \mathcal{P}$

OR, weaker sufficient condition

for all
$$\xi \in ??$$
 $\exists (Y_0^n, Z^n, \Gamma^n)$ s.t. " $Y_{\tau}^{Z^n, \Gamma^n} \longrightarrow \xi$ "

Recall the subclass of contracts

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2} \Gamma_s : d\langle X \rangle_s - H_s(X, Y_s^{Z,\Gamma}, Z_s, \Gamma_s) ds$$

$$\mathbb{P} - \text{a.s. for all } \mathbb{P} \in \mathcal{P}$$

To prove the main result, it suffices to prove the representation

$$\text{for all } \xi \in \ref{eq:constraints} \ \exists \ (Y_0, Z, \Gamma) \quad \text{s.t.} \ \ \xi = Y_T^{Z, \Gamma}, \ \mathbb{P} - \text{a.s. for all } \mathbb{P} \in \mathcal{P}$$

OR, weaker sufficient condition

for all
$$\xi \in ??$$
 $\exists (Y_0^n, Z^n, \Gamma^n)$ s.t. " $Y_T^{Z^n, \Gamma^n} \longrightarrow \xi$ "

Recall the subclass of contracts

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2} \Gamma_s : d\langle X \rangle_s - H_s(X, Y_s^{Z,\Gamma}, Z_s, \Gamma_s) ds$$

$$\mathbb{P} - \text{a.s. for all } \mathbb{P} \in \mathcal{P}$$

To prove the main result, it suffices to prove the representation

$$\text{for all } \xi \in ?? \quad \exists \; \big(\mathit{Y}_{0}, \mathit{Z}, \Gamma \big) \quad \text{s.t.} \; \; \xi = \mathit{Y}_{\mathit{T}}^{\mathit{Z}, \Gamma}, \; \mathbb{P} - \text{a.s. for all } \mathbb{P} \in \mathcal{P}$$

OR, weaker sufficient condition:

for all
$$\xi \in \ref{eq:conditions}$$
 $\exists (Y_0^n, Z^n, \Gamma^n)$ s.t. " $Y_T^{Z^n, \Gamma^n} \longrightarrow \xi$ "

Connexion with nonlinear parabolic PDEs

Consider the Markov case $\xi = g(X_T)$:

$$Y_T = g(X_T)$$
, and $dY_t = Z_t \cdot dX_t + \frac{1}{2}\Gamma_t : d\langle X \rangle_t - H_t(X_t, Y_t, Z_t, \Gamma_t)dt$

Intuitively, $Y_t = v(t, X_t)$ with decomposition (Itô's formula)

$$dY_t = \partial_t v(t, X_t) dt + Dv(t, X_t) \cdot dX_t + \frac{1}{2} D^2 v(t, X_t) \cdot d\langle X \rangle_t$$

By direct identification : $Z_t = Dv(t, X_t)$, $\Gamma_t = D^2v(t, X_t)$, and

$$\partial_t v + H(., v, Dv, D^2 v) = 0$$
, with boundary cond. $v|_{t=T} = g$

 $Representation \equiv \frac{path-dependent}{path-dependent} \ nonlinear \ parabolic \ PDE$

Outline

- The Principal-Agent problem
 - Formulation
 - Reduction to standard control problem
- 2 Fully nonlinear representation in random horizon
 - Semimartingale measures on the canonical space
 - Random horizon 2nd order backward SDEs

Canonical space

$$\Omega := \left\{ \omega \in C^0(\mathbb{R}_+, \mathbb{R}^d) : \omega(0) = 0 \right\}$$

X: canonical process, i.e. $X_t(\omega) := \omega(t)$

$$\mathcal{F}_t := \sigma(X_s, s \leq t), \; \mathbb{F} := \{\mathcal{F}_t, t \geq 0\}$$

 \mathcal{P}^W : collection of all semimartingale measures $\mathbb P$ such that

$$dX_t = b_t dt + \sigma_t dW_t$$
, $\mathbb{P} - a.s.$

for some \mathbb{F} -processes b and σ , and \mathbb{P} -Brownian motion W

Class of prob. meas. on $\Omega : \mathcal{P} \subset \mathcal{P}^W$, sufficiently rich..

 \mathcal{P} -quasi-surely MEANS \mathbb{P} -a.s. for all $\mathbb{P} \in \mathcal{P}$

Canonical space

$$\Omega := \left\{ \omega \in C^0(\mathbb{R}_+, \mathbb{R}^d) : \omega(0) = 0 \right\}$$

X: canonical process, i.e. $X_t(\omega) := \omega(t)$

$$\mathcal{F}_t := \sigma(X_s, s \leq t), \ \mathbb{F} := \{\mathcal{F}_t, t \geq 0\}$$

 \mathcal{P}^W : collection of all semimartingale measures \mathbb{P} such that

$$dX_t = b_t dt + \sigma_t dW_t$$
, \mathbb{P} – a.s.

for some \mathbb{F} -processes b and σ , and \mathbb{P} -Brownian motion W

Class of prob. meas. on $\Omega: \mathcal{P} \subset \mathcal{P}^W$, sufficiently rich...

 \mathcal{P} -quasi-surely MEANS \mathbb{P} -a.s. for all $\mathbb{P} \in \mathcal{P}$

Canonical space

$$\Omega := \left\{ \omega \in C^0(\mathbb{R}_+, \mathbb{R}^d) : \omega(0) = 0 \right\}$$

X: canonical process, i.e. $X_t(\omega) := \omega(t)$

$$\mathcal{F}_t := \sigma(X_s, s \leq t), \ \mathbb{F} := \{\mathcal{F}_t, t \geq 0\}$$

 \mathcal{P}^W : collection of all semimartingale measures $\mathbb P$ such that

$$dX_t = b_t dt + \sigma_t dW_t$$
, \mathbb{P} – a.s.

for some \mathbb{F} -processes b and σ , and \mathbb{P} -Brownian motion W

Class of prob. meas. on $\Omega: \mathcal{P} \subset \mathcal{P}^{W}$, sufficiently rich...

 \mathcal{P} -quasi-surely MEANS \mathbb{P} -a.s. for all $\mathbb{P} \in \mathcal{P}$

Quadratic variation process

 $\langle X \rangle$: quadratic variation process (defined on $\mathbb{R}_+ \times \Omega$)

$$\langle X \rangle_t := X_t^2 - \int_0^t 2X_s dX_s = \mathbb{P} - \lim_{|\pi| \to 0} \sum_{n \ge 1} \left| X_{t \wedge t_n^{\pi}} - X_{t \wedge t_{n-1}^{\pi}} \right|^2$$

for all $\mathbb{P} \in \mathcal{P}^W$, and set

$$\hat{\sigma}_t^2 := \overline{\lim}_{h \searrow 0} \frac{\langle X \rangle_{t+h} - \langle X \rangle_t}{h}$$

Example: (d = 1) Let \mathbb{P}_1 :=Wiener measure, i.e. X is a \mathbb{P}_1 -BM, and define $\mathbb{P}_2 := \mathbb{P}_1 \circ (2X)^{-1}$. Then

$$\hat{\sigma}_t = 1$$
, $\mathbb{P}_1 - \text{a.s.}$ and $\hat{\sigma}_t = 2$, $\mathbb{P}_2 - \text{a.s.}$

 \mathbb{P}_1 and \mathbb{P}_2 are singular

Semimartingale measures on the canonical space

Random horizon 2nd order backward SDEs

Nonlinear expectation operators

 \mathcal{P}^0 : subset of local martingale measures, i.e.

$$dX_t = \sigma_t dW_t$$
, $\mathbb{P} - \text{a.s. for all} \quad \mathbb{P} \in \mathcal{P}^0$

and

$$\mathcal{P}^L := \cup_{\mathbb{P} \in \mathcal{P}^0} \mathcal{P}^L(\mathbb{P}) \quad \text{where} \quad \mathcal{P}^L(\mathbb{P}) := \left\{ \mathbb{Q} = \mathsf{D}(\lambda) \cdot \mathbb{P} : \ \|\lambda\|_{\mathbb{L}^\infty} \leq L \right\}$$

$$\mathbf{D}(\lambda)$$
: the Doléans-Dade exponential $\frac{d\mathbf{D}(\lambda)_t}{\mathbf{D}(\lambda)_t} = \lambda_t \cdot dW_t$, $\mathbf{D}(\lambda)_0 = 1$

⇒ Nonlinear expectations

$$\mathcal{E}_t^\mathbb{P} := \sup_{\mathbb{Q} \in \mathcal{P}^L(\mathbb{P})} \mathbb{E}_t^\mathbb{Q}, \;\; \mathcal{E}_t := \sup_{\mathbb{P} \in \mathcal{P}^0} \mathbb{E}_t^\mathbb{P}, \;\; ext{and} \;\; \mathcal{E}_t^L := \sup_{\mathbb{P} \in \mathcal{P}^L} \mathbb{E}_t^\mathbb{P}$$

 $\mathbb{Q} \sim \mathbb{P} \text{ on } \mathcal{F}_{\mathcal{T}} \text{ for all } \mathcal{T} \in \mathbb{R} + \text{ and } \mathbb{Q} \not \sim \mathbb{P} \text{ on } \mathcal{F}_{\infty} \text{ in general }$

Random horizon 2ndorder backward SDE

For a stop. time au, and $\mathcal{F}_{ au}$ —measurable ξ :

$$Y_{t \wedge \tau} = \xi + \int_{t \wedge \tau}^{\tau} F_s(Y_s, Z_s, \hat{\sigma}_s) ds - \int_{t \wedge \tau}^{\tau} Z_s \cdot dX_s + \int_{t \wedge \tau}^{\tau} dK_s, \ \mathcal{P} - q.s.$$

K non-decreasing, $K_0 = 0$, and minimal in the sense

$$\inf_{\mathbb{P}\in\mathcal{P}}\mathbb{E}^{\mathbb{P}}\Big[\int_{t_1\wedge au}^{t_2\wedge au}dK_t\Big]=0, \ \ ext{for all} \ \ t_1\leq t_2$$

- "(Y, Z) supersolution of BSDE(\mathbb{P}) for all $\mathbb{P} \in \mathcal{P}$ "
- "(Y, Z) solution of BSDE (\mathbb{P}^*) for some $\mathbb{P}^* \in \mathcal{P}$ "

Rewrite the 2BSDE in differential form

$$dY_t = -F_t(Y_t, Z_t, \hat{\sigma}_t)dt + Z_t \cdot dX_t - dK_t, \ t \le \tau, \ \text{and} Y_T = \xi, \ \mathcal{P} - q.s.$$

Markovian case $\xi = g(X_T)$ and $F_t(X, y, z, \hat{\sigma}_t) = f(t, X_t, y, z, \hat{\sigma}_t) \Longrightarrow Y_t = v(t, X_t)$

$$dY_t = \partial_t v(t, X_t) dt + Dv(t, X_t) \cdot dX_t + \frac{1}{2} \text{Tr} \left[\hat{\sigma}_t^2 D^2 v(t, X_t) \right] dt, \ \mathcal{P} - q.s$$

by Itô's formula. Direct identification yields

$$Z_t = Dv(t, X_t)$$
 and $\partial_t v(t, X_t) + \frac{1}{2} \text{Tr} [\hat{\sigma}_t^2 D^2 v(t, X_t)] \le -F_t(v, Dv, \hat{\sigma}_t)$

$$\partial_t v(t, X_t) + \sup_{\sigma} \left\{ \frac{1}{2} \text{Tr} \left[\sigma^2 D^2 v(t, X_t) \right] + F_t(v, Dv, \sigma) \right\} = 0$$

Rewrite the 2BSDE in differential form

$$dY_t = -F_t(Y_t, Z_t, \hat{\sigma}_t)dt + Z_t \cdot dX_t - dK_t, \ t \le \tau, \ \text{and} \ Y_T = \xi, \ \mathcal{P} - q.s.$$

Markovian case $\xi = g(X_T)$ and $F_t(X, y, z, \hat{\sigma}_t) = f(t, X_t, y, z, \hat{\sigma}_t) \Longrightarrow Y_t = v(t, X_t)$

$$dY_t = \partial_t v(t, X_t) dt + Dv(t, X_t) \cdot dX_t + \frac{1}{2} \text{Tr} \left[\hat{\sigma}_t^2 D^2 v(t, X_t) \right] dt, \ \mathcal{P} - q.s.$$

by Itô's formula. Direct identification yields

$$Z_t = Dv(t, X_t)$$
 and $\partial_t v(t, X_t) + \frac{1}{2} \text{Tr} [\hat{\sigma}_t^2 D^2 v(t, X_t)] \le -F_t(v, Dv, \hat{\sigma}_t)$

$$\partial_t v(t, X_t) + \sup_{\sigma} \left\{ \frac{1}{2} \text{Tr} \left[\sigma^2 D^2 v(t, X_t) \right] + F_t(v, Dv, \sigma) \right\} = 0$$

Rewrite the 2BSDE in differential form

$$dY_t = -F_t(Y_t, Z_t, \hat{\sigma}_t)dt + Z_t \cdot dX_t - dK_t, \ t \le \tau, \ \text{and} Y_T = \xi, \ \mathcal{P} - q.s.$$

Markovian case $\xi = g(X_T)$ and $F_t(X, y, z, \hat{\sigma}_t) = f(t, X_t, y, z, \hat{\sigma}_t) \Longrightarrow Y_t = v(t, X_t)$

$$dY_t = \partial_t v(t, X_t) dt + Dv(t, X_t) \cdot dX_t + \frac{1}{2} \text{Tr} [\hat{\sigma}_t^2 D^2 v(t, X_t)] dt, \ \mathcal{P} - q.s.$$

by Itô's formula. Direct identification yields

$$Z_t = Dv(t, X_t)$$
 and $\partial_t v(t, X_t) + \frac{1}{2} \text{Tr} [\hat{\sigma}_t^2 D^2 v(t, X_t)] \le -F_t(v, Dv, \hat{\sigma}_t)$

$$\partial_t v(t, X_t) + \sup_{\sigma} \left\{ \frac{1}{2} \text{Tr} \left[\sigma^2 D^2 v(t, X_t) \right] + F_t(v, Dv, \sigma) \right\} = 0$$

Rewrite the 2BSDE in differential form

$$dY_t = -F_t(Y_t, Z_t, \hat{\sigma}_t)dt + Z_t \cdot dX_t - dK_t, \ t \le \tau, \ \text{and} Y_T = \xi, \ \mathcal{P} - q.s.$$

Markovian case $\xi = g(X_T)$ and $F_t(X, y, z, \hat{\sigma}_t) = f(t, X_t, y, z, \hat{\sigma}_t) \Longrightarrow Y_t = v(t, X_t)$

$$dY_t = \partial_t v(t, X_t) dt + Dv(t, X_t) \cdot dX_t + \frac{1}{2} \text{Tr} \left[\hat{\sigma}_t^2 D^2 v(t, X_t) \right] dt, \ \mathcal{P} - q.s.$$

by Itô's formula. Direct identification yields

$$Z_t = Dv(t, X_t)$$
 and $\partial_t v(t, X_t) + \frac{1}{2} \text{Tr} [\hat{\sigma}_t^2 D^2 v(t, X_t)] \le -F_t(v, Dv, \hat{\sigma}_t)$

$$\partial_t v(t, X_t) + \sup_{\sigma} \left\{ \frac{1}{2} \operatorname{Tr} \left[\sigma^2 D^2 v(t, X_t) \right] + F_t(v, Dv, \sigma) \right\} = 0$$

Nonlinearity

Assumptions $F: \mathbb{R}_+ \times \omega \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{S}^d_+ \longrightarrow \mathbb{R}$ satisfies

(C1_L) Lipschitz in $(y, \sigma z)$:

$$\left|F(.,y,z,\sigma)-F(.,y',z',\sigma)\right| \leq L\left(\left|y-y'\right|+\left|\sigma(z-z')\right|\right)$$

 $(C2_{\mu})$ Monotone in y:

$$(y-y')\cdot [F(.,y,.)-F(.,y',.)] \leq -\mu |y-y'|^2$$

Denote
$$f_t(y, z) := F_t(y, z, \widehat{\sigma}_t)$$
 and $f_t^0 := F_t(0, 0, \widehat{\sigma}_t)$

Remark Deterministic finite horizon $\tau = T: (C2)_{\mu}$ not needed Soner, NT & Zhang '14 and Possamaï, Tan & Zhou '16

Nonlinearity

Assumptions $F: \mathbb{R}_+ \times \omega \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{S}^d_+ \longrightarrow \mathbb{R}$ satisfies

(C1_L) Lipschitz in $(y, \sigma z)$:

$$|F(.,y,z,\sigma)-F(.,y',z',\sigma)| \leq L (|y-y'|+|\sigma(z-z')|$$

 $(C2_{\mu})$ Monotone in y:

$$(y-y')\cdot [F(.,y,.)-F(.,y',.)] \leq -\mu |y-y'|^2$$

Denote
$$f_t(y, z) := F_t(y, z, \widehat{\sigma}_t)$$
 and $f_t^0 := F_t(0, 0, \widehat{\sigma}_t)$

Remark Deterministic finite horizon $\tau=T$: $(C2)_{\mu}$ not needed Soner, NT & Zhang '14 and Possamaï, Tan & Zhou '16

Wellposedness of random horizon 2ndorder backward SDE

Theorem (Y. Lin , Z. Ren, NT & J. Yang '17)

Let $\|\xi\|_{\mathcal{L}^{\mathbf{q}}_{\rho,\tau}(\mathcal{P}^L)} < \infty$, $\overline{f}^{\mathbf{q}}_{\rho,\tau} := \mathcal{E}^L \left[\left(\int_0^\tau \left| e^{\rho t} f^0_t \right|^2 ds \right)^{\frac{\mathbf{q}}{2}} \right]^{\frac{1}{\mathbf{q}}} < \infty$, for some $\rho > -\mu$, $\mathbf{q} > \mathbf{1}$. Then the Random horizon 2BSDE has a unique solution (Y,Z) with

$$Y \in \mathcal{D}_{\eta,\tau}^{p}(\mathcal{P}^{L}), \ \ Z \in \mathcal{H}_{\eta,\tau}^{p}(\mathcal{P}^{L}) \ \ \text{ for all } \ \ \eta \in [\mu,\rho), \ \ p \in [1,q)$$

$$\begin{split} \|\xi\|_{\mathcal{L}^{\pmb{q}}_{\rho,\tau}(\mathcal{P})}^{\pmb{p}} &:= \mathcal{E}^L \Big[\big| e^{\rho\tau} \xi \big|^{\pmb{q}} \Big], \quad \|Y\|_{\mathcal{D}^{\pmb{p}}_{\eta,\tau}(\mathcal{P})}^{\pmb{p}} &:= \mathcal{E}^L \Big[\sup_{t \leq \tau} \big| e^{\eta t} Y_t \big|^{\pmb{p}} \Big] \\ \|Z\|_{\mathcal{H}^{\pmb{p}}_{\eta,\tau}(\mathcal{P})}^{\pmb{p}} &:= \mathcal{E}^L \Big[\Big(\int_0^\tau \big| e^{\eta t} \, \widehat{\sigma}_t^{\mathrm{T}} Z_t \big|^2 dt \Big)^{\frac{p}{2}} \Big] \end{split}$$

Back to Principal-Agent problem

Recall the subclass of contracts

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2} \Gamma_s : d\langle X \rangle_s - H_s(X, Y_s^{Z,\Gamma}, Z_s, \Gamma_s) ds, \ \mathcal{P} - q.s.$$

To prove the main result, it suffices to prove the **representation**

for all
$$\xi \in ??$$
 $\exists (Y_0, Z, \Gamma)$ s.t. $\xi = Y_T^{Z, \Gamma}, \mathcal{P} - q.s.$

OR, weaker sufficient condition

for all
$$\xi \in ??$$
 $\exists (Y_0^n, Z^n, \Gamma^n)$ s.t. " $Y_T^{Z^n, \Gamma^n} \longrightarrow \xi$ "

Back to Principal-Agent problem

Recall the subclass of contracts

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2} \Gamma_s : d\langle X \rangle_s - H_s(X, Y_s^{Z,\Gamma}, Z_s, \Gamma_s) ds, \ \mathcal{P} - q.s.$$

To prove the main result, it suffices to prove the representation

$$\text{for all } \xi \in ?? \quad \exists \; \big(Y_0, Z, \Gamma\big) \quad \text{s.t.} \quad \xi = Y_T^{Z, \Gamma}, \; \mathcal{P} - \text{q.s.}$$

OR, weaker sufficient condition:

for all
$$\xi \in ??$$
 $\exists (Y_0^n, Z^n, \Gamma^n)$ s.t. " $Y_T^{Z^n, \Gamma^n} \longrightarrow \xi$ "

Reduction to second order BSDE

• $H_t(\omega, y, z, \gamma)$ non-decreasing and convex in γ , Then

$$H_t(\omega, y, z, \gamma) = \sup_{\sigma \geq 0} \left\{ \frac{1}{2} \sigma^2 : \gamma - H_t^*(\omega, y, z, \sigma) \right\}$$

Denote
$$k_t := H_t(Y_t, Z_t, \Gamma_t) - \frac{1}{2}\hat{\sigma}_t^2 : \Gamma_t + H_t^*(Y_t, Z_t, \hat{\sigma}_t) \ge 0$$

Then, required representation $\xi=Y^{2,1}_T$, $\mathcal{P}-$ q.s. is **equivalent to**

$$\xi = Y_0 + \int_0^T Z_t \cdot dX_t + H_t^*(Y_t, Z_t, \hat{\sigma}_t) dt - \int_0^T k_t dt, \quad \mathcal{P} - q.s.$$

 \implies 2BSDE up to approximation of nondecreasing process K

Reduction to second order BSDE

• $H_t(\omega, y, z, \gamma)$ non-decreasing and convex in γ , Then

$$H_t(\omega, y, z, \gamma) = \sup_{\sigma \geq 0} \left\{ \frac{1}{2} \sigma^2 : \gamma - H_t^*(\omega, y, z, \sigma) \right\}$$

Denote
$$k_t := H_t(Y_t, Z_t, \Gamma_t) - \frac{1}{2}\hat{\sigma}_t^2 : \Gamma_t + H_t^*(Y_t, Z_t, \hat{\sigma}_t) \ge 0$$

Then, required representation $\xi = Y_T^{Z,\Gamma}$, \mathcal{P} -q.s. is **equivalent to**

$$\xi = Y_0 + \int_0^T Z_t \cdot dX_t + H_t^*(Y_t, Z_t, \hat{\sigma}_t) dt - \int_0^T k_t dt, \quad \mathcal{P} - q.s.$$

 \implies 2BSDE up to approximation of nondecreasing process K

