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The Principal-Agent problem Formulation
Reduction to standard control problem

(Static) Principal-Agent Problem

e Principal delegates management of output process X,
only observes X

e Agent devotes effort a = X7, chooses optimal effort by

Vo = maaxIE Ua( - ¢(a))
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The Principal-Agent problem Formulation
Reduction to standard control problem

(Static) Principal-Agent Problem

e Principal delegates management of output process X,
only observes X
pays salary defined by contract £(X)

e Agent devotes effort a = X?, chooses optimal effort by

VA(€) = maxE Un(£(X7) — c(a) = 4(¢)
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The Principal-Agent problem Formulation
Reduction to standard control problem

(Static) Principal-Agent Problem

e Principal delegates management of output process X,
only observes X
pays salary defined by contract £(X)
e Agent devotes effort a = X?, chooses optimal effort by
Va(€) = m;xE UA(f(Xa) — c(a)) = 4(¢)
e Principal chooses optimal contract by solving

mgaxIE Up (Xé(g) - E(Xé(g))) under constraint  Va(£) > p
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The Principal-Agent problem Formulation
Reduction to standard control problem

(Static) Principal-Agent Problem

e Principal delegates management of output process X,
only observes X
pays salary defined by contract £(X)

e Agent devotes effort a = X?, chooses optimal effort by
Va() = maxEUa(£(X7) — () = 4(¢)
e Principal chooses optimal contract by solving

mgaxIE Up (Xé(g) - E(Xé(g))) under constraint  Va(&) > p

— Non-zero sum Stackelberg game
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The Principal-Agent problem Formulation
Reduction to standard control problem

(Static) Principal-Agent Problem ==> Continuous time

e Principal delegates management of output process X,
only observes X
pays salary defined by contract £(X)

e Agent devotes effort a = X?, chooses optimal effort by
Va() = maxEUa(£(X7) — () = 4(¢)
e Principal chooses optimal contract by solving

mgaxIE Up (Xé(g) - E(Xé(g))) under constraint  Va(&) > p

— Non-zero sum Stackelberg game
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The Principal-Agent problem Formulation
Reduction to standard control problem

Principal-Agent problem formulation

Agent problem :

@O = s [e0 - [ atud]

PeP

P € P : weak solution of Output process for some v valued in U :

dX; = b(X,v)dt +or(X,v)dWS P—as.
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The Principal-Agent problem Formulation
Reduction to standard control problem

Principal-Agent problem formulation

Agent problem :
-
VO = s B[ - [ el
PeP Jo
P € P : weak solution of Output process for some v valued in U :
dX; = b(X,v)dt +or(X,v)dWS P—as.

e Given solution P*(&), Principal solves the optimization problem

Ve = gseuf EP*(E)[U(E(X)—f(X))}

where =, = {£(X): V'(€) > P}

Possible extensions : random (possibly oo) horizon, heterogeneous M e
agents with possibly mean field interaction, competing Principals. ..
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The Principal-Agent problem Formulation
Reduction to standard control problem

Principal-Agent problem formulation : non-degeneracy

Agent problem :
-
VO = s B[ - [ el
PeP JO
P € P : weak solution of Output process for some v valued in U :
dX: = o¢(X,Be)[Me(X, ar)dt + dW,| P —as.

e Given solution P*(&), Principal solves the optimization problem

VP = sup EP*(O[U(K(X)—g(X))}

where =, = {£(X): Vg'(€) > P}

Possible extensions : random (possibly oo) horizon, heterogeneous M feicumau
agents with possibly mean field interaction, competing Principals...
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The Principal-Agent problem Formulation
Reduction to standard control problem

GENERAL SOLUTION APPROACH
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The Principal-Agent problem Formulation
Reduction to standard control problem

A subset of revealing contracts

e Path-dependent Hamiltonian for the Agent problem :
1
Hu(wz,7) = sup {bilio, )2+ 5000 (,0):7 = oo, )}
ue

e For Yy € R, Z,T FX — prog meas, define P—a.s. for all P € P

t

1

A +/ Zs - dXs + 55 2 d(X)s = Hs(X, Zs,Ts)ds
0
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The Principal-Agent problem Formulation
Reduction to standard control problem

A subset of revealing contracts

e Path-dependent Hamiltonian for the Agent problem :

1
Hi(w,z,7v) = suB {be(w,u)-z+ Eata:(w, u):y — ce(w, u)}
ue

e For Yy € R, Z,T FX — prog meas, define P—a.s. for all P € P

t

1

A +/ Zs - dXs + 55 2 d(X)s = Hs(X, Zs,Ts)ds
0

Proposition VA(Y%r) = Yp. Moreover P* is optimal iff

V;_.k = Argmax Ht(Zt> rt) = ﬁ(Zt, rt)
uel
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The Principal-Agent problem Formulation
Reduction to standard control problem

Principal problem restricted to revealing contracts

Dynamics of the pair (X, Y) under “optimal response”

dXe = Vo Ho(X, YET, Ze 1) dt + {2V, H(X, YET, Z0,T0) )2 dW,

bt(lej(YNZﬁrf)) a’t(le/)(Ythvrt))

dY{T = Ze-dXe + 5T d(X)e = Hi(X, VYT, Z0, To)dt

= Principal’s value function under revealing contracts :

Ve > Vo(Xo, Yo) :=  sup E[U(Z(X) - Y?r)}, for all Yo > p
(z,Nevy
where V.= {(2,1): Z e H2(P) and P*(YF") £0} e

7 N\
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The Principal-Agent problem Formulation
Reduction to standard control problem

Reduction to standard control problem

Theorem (Cvitani¢, Possamai & NT '15)
Assume V) # (). Then

Ve = sup Wo(Xo, Y0)
Yo>p

Given maximizer Y§, the corresponding optimal controls (Z*,*)
induce an optimal contract

;
1 * *
& =Y +/0 Z; - dXe+ 57 d(X)e = He(X, Y U ZE T dt

v
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The Principal-Agent problem Formulation
Reduction to standard control problem

Recall the subclass of contracts
t
1
Y/ = v, +/ Zo - dXs + 5rszd(x>s — Ho(X,YZ", Z,,T.)ds
0

P—as. forallPeP
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The Principal-Agent problem Formulation
Reduction to standard control problem

Recall the subclass of contracts
t
1
Y/ = v, +/ Zo - dXs + 5rszd(x>s — Ho(X,YZ", Z,,T.)ds
0

P—as. forallPeP

To prove the main result, it suffices to prove the representation

forall £ €?? 3 (Yp,Z,IN) st &= Yf’r, P—as. forallPeP
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The Principal-Agent problem Formulation
Reduction to standard control problem

Recall the subclass of contracts
t
1
Y/ = v, +/ Zo - dXs + 5rszd<x>s — Ho(X,YZ", Z,,T.)ds
0

P—as. forallPeP

To prove the main result, it suffices to prove the representation

forall £ €?? 3 (Yp,Z,IN) st &= Yf’r, P—as. forallPeP

OR, weaker sufficient condition :

forall € €22 3(Yg,Z7T") st “YE T — ¢ X
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The Principal-Agent problem Formulation
Reduction to standard control problem

Connexion with nonlinear parabolic PDEs

Consider the Markov case { = g(X71) :
Yr = g(X7), and dY; = Zt-dXt+%Ft:d<X>t—Ht(Xt, Yi, Ze, [t)dt
Intuitively, Y: = v(t, X;) with decomposition (Itd's formula)
dY; = Opv(t, Xe)dt + Dv(t, X;) - dX¢ + %Dzv(t,Xt):d<X)t
By direct identification : Z, = Dv(t, X;), [y = D?v(t, X;), and

Otv + H(., v, Dy, D2v) = 0, with boundary cond.v‘t:T =g

Representation = path-dependent nonlinear parabolic PD

ECOLE
£ R, POLYTECHNIQUE

Nizar Touzi On continuous time contract theory



Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Outline

© Fully nonlinear representation in random horizon
@ Semimartingale measures on the canonical space
@ Random horizon 2nd order backward SDEs
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Canonical space

Q:={we COR;,RY) : w(0) =0}
X : canonical process, i.e. Xi(w) := w(t)

ft = J(X57$ < t), F:= {.Ft, t> 0}
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Canonical space

Q:={we COR;,RY) : w(0) =0}

X : canonical process, i.e. Xi(w) := w(t)

Fi:=0(Xs,s <t), F:={F,t >0}

PW : collection of all semimartingale measures P such that
dX; = bydt + o dWy, P —ass.

for some F—processes b and o, and P—Brownian motion W

Class of prob. meas. on Q : P ¢ PW, sufficiently rich...
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Canonical space

Q:={we COR;,RY) : w(0) =0}

X : canonical process, i.e. Xi(w) := w(t)

Fi:=0(Xs,s <t), F:={F,t >0}

PW : collection of all semimartingale measures P such that
dX; = bydt + o dWy, P —ass.

for some F—processes b and o, and P—Brownian motion W

Class of prob. meas. on Q : P ¢ PW, sufficiently rich...

P—quasi-surely MEANS P—a.s. for all P € P
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Quadratic variation process

(X) : quadratic variation process (defined on R x Q)

(X)e 1= X2 — [F2XedXs = P—limg 0 Y oy [Xeney — Xener |

for all P € PY, and set
52 = Timp o <X>t+l;:<x>t
Example : (d = 1) Let P; :=Wiener measure, i.e. X is a P1—BM,
and define P, := P; o (2X)~!. Then
6¢=1, Py —as.and 6:=2, P, —as.
P; and P, are singular :
><5%f¢sg9ﬂu.aug
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Nonlinear expectation operators

PO : subset of local martingale measures, i.e.
dX; = o¢dW,, P —as. forall Pe PP
and
P = UpepoPH(P) where PH(P):= {Q=D(\)-P: |[Al.= <L}

D(X) : the Doléans-Dade exponential dg(()\)s): =Ae-dW;, D(A\)o =1

= Nonlinear expectations

&= sup EY, & := sup B, and &L= sup EY
QePL(P) PePO PePtL

p ECOLE
Q~Pon Frforall TeR+ and Q # P on F in general ><



Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Random horizon 2ndorder backward SDE

For a stop. time 7, and F,—measurable ¢ :

T T T
Yt/\r = §+/ Fs(Y572576s)d5_/ Zs - dX; +/ dK57 P — q.s.
t t t

AT AT AT

K non-decreasing, Ko = 0, and minimal in the sense

O AT
inf EP{/ th} =0, forall 1<t
PeP t1INT

e “(Y,Z) supersolution of BSDE(P) for all P € P "
e “(Y,Z) solution of BSDE(PP*) for some P* € P "
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Connection with fully nonlinear PDEs

Rewrite the 2BSDE in differential form
dYt = _Ft(ytw Zt.ﬁ't)dt—F Zt : dXt - th, t S T, andYT = 5, P - q.S.

Markovian case £ = g(X7) and F(X,y,z,6¢) = f(t, X, y,2,6¢) =
Yl’ = V(t,Xt)

ECOLE
£ R, POLYTECHNIQUE

Nizar Touzi On continuous time contract theory



Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Connection with fully nonlinear PDEs

Rewrite the 2BSDE in differential form
dYt = _Ft(ytw Zt.ﬁ't)dt—F Zt : dXt - th, t S T, andYT = 5, P - q.S.

Markovian case £ = g(X7) and F(X,y,z,6¢) = f(t, X, y,2,6¢) =
Yl’ = V(t,Xt)

1
dY; = Orv(t, X;)dt + Dv(t, X;)-dX; + 5T [67D%v(t,X;)]dt, P —qs.

by Itd's formula.
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Connection with fully nonlinear PDEs

Rewrite the 2BSDE in differential form
dYt = _Ft(ytw Zt.a't)dt—F Zt : dXt - th, t S T, andYT = 5, P - q.S.

Markovian case £ = g(X7) and F(X,y,z,6¢) = f(t, X, y,2,6¢) =
Yl’ = V(t,Xt)

1
dY; = Orv(t, X;)dt + Dv(t, X;)-dX; + 5T [67D%v(t,X;)]dt, P —qs.
by Itd's formula. Direct identification yields

1
Z, = Dv(t,X;) and Owv(t,X;)+ 5Tr[&fDZv(t,xt)] < — Fi(v,Dv,5,)
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Connection with fully nonlinear PDEs

Rewrite the 2BSDE in differential form
dYt = _Ft(ytw Zt.a't)dt—F Zt : dXt - th, t S T, andYT = 5, P - q.S.

Markovian case £ = g(X7) and F(X,y,z,6¢) = f(t, X, y,2,6¢) =
Yl’ = V(t,Xt)

dY; = Opv(t, X;)dt + Dv(t, X;)-dX; + %Tr [67D%v(t,X;)]dt, P —qs.
by Itd's formula. Direct identification yields
Z, = Dv(t,X;) and Owv(t,X;)+ %Tr[&fozv(t,xt)] < — Fi(v,Dv,5,)
Finally, the minimality condition on K implies the fully nonlinear PDE

ECOLE
£ R, POLYTECHNIQUE

Orv(t, Xi) + stCer {%Tr [0*D?v(t, X)] + Fe(v, Dv,a)} =0 ><
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Nonlinearity

Assumptions F: Ry x w x R x R? x S¢ — R satisfies
(C1,) Lipschitz in (y,oz) :
\F(.,y,z,0) = F(.y',Z,0)| < L (ly = ¥'| + |o(z = Z)|
(C2,,) Monotone in y :
=y [FCy )= FGY ) < —uly —y'P

Denote f(y,z) := F;(y,z,0¢) and f2 := F¢(0,0,5)
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Nonlinearity

Assumptions F: Ry x w x R x R? x S¢ — R satisfies
(C1,) Lipschitz in (y,oz) :
|F(y,2,0) = F(,y 2 0)| < L(ly —y'| +]o(z = 2)]
(C2,,) Monotone in y :
=y [FCy )= FGY ) < —uly —y'P
Denote f(y,z) := F;(y,z,0¢) and f2 := F¢(0,0,5)

Remark Deterministic finite horizon 7 = T : (C2), not needed
Soner, NT & Zhang '14 and Possamai, Tan & Zhou '16 ><
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Wellposedness of random horizon 2Ndorder backward SDE

Theorem (Y. Lin, Z. Ren, NT & J. Yang '17)

_ a1

Let ”f“LZ,T(PL) < o0, f,:’T =E(Jfy ‘eptﬂ0‘2ds)g] 7 < oo, for
some p > —, q > 1. Then the Random horizon 2BSDE has a
unique solution (Y, Z) with

P L P L )
YeD,(P), ZeH,(P") forall nelup), pell,aq)

H&HZ;{’T(p) =t Ue’wﬁ‘q}, | YHPDZ,T(P) = SL[suptST ‘e”thﬂ

P
~ 2 2
1212, oy = €[ (J5 e 5T Zee) "]
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Back to Principal-Agent problem

Recall the subclass of contracts
t
1
yil = Y0+/ ZS-dXS—i—EFS:d(X)S—HS(X, YU 7., T)ds, P —q.s.
0

To prove the main result, it suffices to prove the representation

forall¢€?? 3(Yp,Z,T) st &= Y?ﬂ P —qs.
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Back to Principal-Agent problem

Recall the subclass of contracts
t
1
\ff_Wﬁ/ ad&+J;ﬂX%4uXJfﬂLJQ$,P—qs
0

To prove the main result, it suffices to prove the representation

forall¢€?? 3(Yp,Z,T) st &= Y?ﬂ P —qs.

OR, weaker sufficient condition :

forall € €77 3 (Y, 2", 1) st “Yi T —¢
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Reduction to second order BSDE

e Hi(w, y,z,~) non-decreasing and convex in 7, Then
Helw.y2,7) = SUP{%T :A//_H:(way,z,(f)}

Denote kt = Ht(Yt, Zt, I_t) - %6% . I_t -+ Hf(Yt,Zt,ﬁt) 2 0
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Semimartingale measures on the canonical space
Fully nonlinear representation in random horizon Random horizon 2nd order backward SDEs

Reduction to second order BSDE

e Hi(w, y,z,~) non-decreasing and convex in 7, Then

1
Ht(wvyvzv,\/) = Sup{io—z :A//_H:(wayazﬂo_)}
>0 2

Denote ke := Hy(Ye, Ze,Te) — 262 : Ty + H; (Ye, Ze,6¢) >0

Then, required representation £ = Y%’r, P—q.s. is equivalent to

T T
52 Y()"‘/ thXt—{—H:(Yt,Zt/&t)dt—/ ktdt, Pqu
0 0

— 2BSDE up to approximation of nondecreasing process K
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